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Introduction 

For many years, researchers have been troubled by the sensitivity of normal models to 
the occurrence of the occasional extreme observation. The idea of utilizing least absolute 
deviation instead of least squares suggested the use of Laplace distributions as viable 
competitors of normal models. The existence of asymmetric error confgurations called 
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for the development of asymmetric models. Recently (Kozubowski and Podgórski 
(2000a), Kozubowski and Podgórski (2000b)), attention has been drawn to the existence 
of asymmetric Laplace models which, when compared with normal models, have a 
double advantage of reduced sensitivity to outliers together with an ability to model 
asymmetry. Such Laplace models are reviewed and generalized in Section 2, together 
with discussion of suitable parameter estimation strategies. In Section 3, we consider 
the problem of developing fexible families of bivariate models with asymmetric 
Laplace marginals, together with some natural generalizations. These models provide 
direct competition to the usually employed classical bivariate normal model. In two 
dimensions, these Laplace models and their generalized versions continue to exhibit a 
degree of outlier resistance and an ability to adapt to asymmetries in the data. A small 
simulation study is included in Section 4, and in the concluding Section, discussion of 
analogous higher dimensional models is presented. 

2 Univariate Asymmetric Laplace Models 

Kozubowski and Podgórski (2000ab) defne the univariate asymmetric Laplace distribu-
tion to be one with characteristic function of the form: 

φX(t) = (1 + σ2t2 
− iµt)−1 , (2.1) 

where µ ∈ R and σ2 > 0. This notation is a bit suspect since it may give the impression 
that µ and σ are location and scale parameters, which they are not. However, it is true 
that, if µ = 0, then the distribution is symmetric. 

An alternative representation of the model is available and will be used. For it we 
begin with two independent exponential random variables, V1 and V2 with Vi ∼ exp(λi), 
i = 1, 2. We then defne 

X = V1 − V2. (2.2) 

The characteristic function of X, defned by (2.2), is readily found to be of the form 

φX(t) = [1 + λ1λ2t2 
− i(λ1 − λ2)t]−1 , (2.3) 

which can be recognized as the same as the Kozubowski-Podgórski characteristic 
function (2.1) if we set µ = λ1 − λ2 and σ2 = λ1λ2. The parameters λ1 and λ2 admit 
obvious interpretations in this version of the model, while the interpretation of µ and 
σ2 appears to be problematic. 

Before addressing the issue of proposing bivariate and multivariate asymmetric 
Laplace models, we will digress to consider an unusual property of the symmetric 
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Laplace distribution. The density of the univariate symmetric Laplace distribution 
can be obtained by two different constructions. One construction deals with the 
difference of two independent identically distributed exponential variables. The other 
construction is a 1/2 : 1/2 mixture of an exponential distribution and a negative 
exponential distribution. In the frst case the characteristic function is: 

(1 − iλt)−1(1 + iλt)−1 , 

while in the second case, it is 

(1/2)(1 − iλt)−1 + (1/2)(1 + iλt)−1 . 

It is readily verifed that the two representations agree. Jones (2019) has identifed 
a generalization of this result by verifying that the only models in which differences 
of independent exponentials have the same distribution as suitable mixtures of the 
variables of differing signs are the asymmetric Laplace models of the form (2.1) or (2.2). 

A mixture representation of (2.1) was noted by Kozubowski and Podgórski using 
the µ, σ2 parameterization. It is more simply described using the λ1, λ2 parameters, 
and is as follows. 

Suppose that X has a distribution of an exponential (λ1) variable with probability 
[λ1/(λ1 + λ2)], and has that of the negative of an exponential (λ2) variable with 
probability [λ2/(λ1 + λ2)]. In that case the random variable has the asymmetric Laplace 
distribution (2.1)=(2.2). In such a case we will write X ∼ AL(λ1, λ2). 

A convenient representation of the mixture is 

X = IV1 + (1 − I)(−V2), (2.4) 

where Vi ∼ exp(λi), i = 1, 2, and I is an independent Bernoulli random variable with 
P(I = 1) = [λ1/(λ1 + λ2)]. 

The mixture representation (2.4) immediately suggests consideration of a more 
general model with an additional parameter for fexibility. We thus will consider 

Y = IV1 + (1 − I)(−V2), (2.5) 

where Vi ∼ exp(λi), i = 1, 2, and I is an independent Bernoulli random variable with 
P(I = 1) = p. 

It is readily verifed that the characteristic function of a generalized asymmetric 



64 B. C. Arnold and M. A. Arvanitis 

Laplace variable of the form (2.5) is given by 

1 + it[pλ2 − (1 − p)λ1]
φY(t) = . (2.6)

1 + λ1λ2t2 + it(λ2 − λ1) 

From this characteristic function, or from the mixture representation (2.5) we fnd 

E(Y) = pλ−1 
− (1 − p)λ−1 ,1 2 

and 

var(Y) = p(2 − p)λ−2 + (1 − p2)λ−2 + 2p(1 − p)λ−1λ−1 .1 2 1 2 

In the case in which X ∼ AL(λ1, λ2) the moments simplify to become 

E(X) = λ−1 
− λ−1 ,1 2 

and 

var(X) = λ−2 + λ−2 .1 2 

A key distinction between the Kozubowski-Podgórski model and the generalized 
asymmetric Laplace model (2.5) is that it is only in the special case in which p = 
[λ2/(λ1 + λ2)] that the density is continuous at 0. 

Remark 1. A more general distribution than (2.5) can be constructed in which the 
Ii’s are dependent indicators. For this more general model we begin with a random 
vector (J1, J2, J3, J4) with 4 possible values (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0) and (0, 0, 0, 1) 
with associated probabilities π1, π2, π3 and π4, and then defne I1 = max{J1, J3} and 
I2 = max{J2, J3}. The random variables (X, Y) are then defned as in (2.5) using the 
dependent Ii’s just defned. The same modifcation can be made to generalize (2.4). 

Remark 2. Higher dimensional versions can also be envisioned. However even in two 
dimensions the number of parameters will be 8 + 3 = 11 while in three dimensions 
there will be 26 + 7 = 33 parameters, and 80 + 15 = 95 parameters in the 4-dimensional 
model. Restriction to simplifed submodels will undoubtedly be adequate in almost all 
applications. 
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2.1 Estimation for The AL Distribution 

2.1.1 Maximum Likelihood 

Suppose we have a sample X1, X2, ..., Xn from an asymmetric Laplace distribution with 
density 

fX(x; λ1, λ2) = 
λ1λ2 [e−λ1xI(x > 0) + eλ2xI(x < 0)]. 
λ1 + λ2 P P Pn n nDefne U = 1 XiI(Xi > 0), V = − 1 XiI(Xi < 0) and W = 1 I(Xi > 0). 

We wish to estimate the parameters using maximum likelihood. The mle’s are given 
n nby solving the likelihood equations to get: λe1 = √ and λe2 = √ . 

U+ UV V+ UV 

2.1.2 Method of Moments 

Suppose we have a sample X1, X2, ..., Xn from an asymmetric Laplace distribution 
represented in the form 

X = V1 − V2, 

where the Vi’s are i.i.d. with Vi ∼ exponential(λi), i = 1, 2. 

We will equate the frst moment of X and the frst absolute moment of X to the 
corresponding sample moments. Elementary computations yield 

λ2
1 + λ2 

2E(X) = λ−1 
− λ−1 and E(|X|) = .1 2 λ1λ2(λ1 + λ2) 

Denote the corresponding sample moments by 

n nX X 
M1 = (1/n) Xi and M2 = (1/n) |Xi|, 

1 1 

and set up and solve the equations E(X) = M1 and E(|X|) = M2 to get the following 
MOM estimates 
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⎡ q ⎤−1 ⎢M2 + M1 + M2
2 − M1

2 eλ1 = ,⎢⎣ 2 ⎥⎦ 
(2.7)⎡ q ⎤−1 

M2 − M1 + M2
2 − M2

1eλ2 = .⎢⎣ 2 ⎥⎦ 
2.2 Bayesian Method 

Suppose we have a sample X1, X2, ..., Xn from an asymmetric Laplace distribution with 
density 

fX(x; λ1, λ2) = 
λ1λ2 [e−λ1xI(x > 0) + eλ2xI(x < 0)]. 
λ1 + λ2P P Pn n nDefne U = 1 XiI(Xi > 0), V = − 1 XiI(Xi < 0) and W = 1 I(Xi > 0) We wish to 

estimate the parameters from a Bayesian viewpoint. The likelihood for the sample is 
given by � �nλ1λ2 −λ1u −λ2vL(λ1, λ2) = e e . 

λ1 + λ2 

If we take independent gamma priors for λ1 and λ2, say 

λei ∼ Γ(αi, δi), i = 1, 2, 

our posterior density will be of the form 

f (λ1, λ2|X = x) ∝ (λ1 + λ2)−nλα1+n−1λα2+n−1e−(u+δ1)λ1 e−(v+δ2)λ2 .1 2 

From this joint posterior density for (λ1, λ2) the usual Bayes estimates of λ1 and λ2, 
namely E(λ1|X = x) and E(λ2|X = x), will be obtained by numerical integration. 

2.3 Estimation for the GAL Distribution 

2.3.1 Maximum likelihood 

Suppose instead we have a sample X1, X2, ..., Xn from a generalized asymmetric Laplace 
distribution of the form 

X = IY1 + (1 − I)(−Y2), 
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where I ∼ Bernoulli(p) and the Yi’s are independent with Yi ∼ exp(λi), i = 1, 2. AgainP P Pn n ndefne U = 1 XiI(Xi > 0), V = − 1 XiI(Xi < 0), and W = 1 I(Xi > 0). We wish 
to estimate the parameters using maximum likelihood. Here too, we can solve the 
likelihood equations (they are easier in this case) to obtain 

W W n − Weep = , λ1 = , and λe2 = . (2.8)
n U V 

2.3.2 Method of Moments 

Suppose we have a sample X1, X2, ..., Xn from a generalized asymmetric Laplace distribution 
of the form 

X = IV1 + (1 − I)(−V2), 

where I ∼ Bernoulli(p) and the Vi’s are independent with Vi ∼ exp(λi), i = 1, 2. We wish 
to estimate the parameters using the method of moments. For convenience, defne 
δi = λ−1 , i = 1, 2. The frst three moments are: i 

E(X) = pδ1 − (1 − p)δ2, (2.9) 
E(X2) = 2pδ2

1 + 2(1 − p)δ2
2, (2.10) 

E(X3) = 6pδ3
1 − 6(1 − p)δ3

2. (2.11) 

nDenote the sample moments by Mi = (1/n) 
P 

j=1 X
i
j, i = 1, 2, 3. 

The moment equations to solve are: 

M1 = pδ1 − (1 − p)δ2, (2.12) 
M2 = 2pδ1

2 + 2(1 − p)δ2
2, (2.13) 

M3 = 6pδ1
3 
− 6(1 − p)δ3

2. (2.14) 

It can be shown that in order to satisfy the moment equations, δ̂1 must be a root of 
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the following polynomial 
5p(x) = (24M2 − 48M2

1)x 
4+ (144M3

1 − 8M3 − 48M1M2)x 
3+ (32M1M3 − 96M4

1 − 48M2
1M2)x 

2+ (36M1M2
2 − 4M2M3 − 16M1

2M3 + 72M3
1M2 − 24M1

2M3)x 

+ (16M3
1M3 + 8M1M2M3 − 36M1

2M2
2 − 6M2

3)x (2.15) 

+ (6M1M3
2 − 4M2

1M2M3), 

Eliminating complex and non-positive real roots yields all possible values for δ̂1. For 
each, we can compute the other two estimates, if they exist, i.e,. 

ˆM2 − 2M1δ̂2 = 
δ1 , (2.16)

2(δ̂1 − M1) 
and 

M1 + δ̂2 p̂ = . (2.17)
δ̂1 + δ̂2 

Any resulting values of (δ̂1, δ̂2, p) which are in the parameter space are MOM estimates. 
Clearly, under these conditions, it may be that no estimates exist or that multiple 
estimates exist. 

2.4 Bayesian Method 

Suppose instead we have a sample X1, X2, ..., Xn from a generalized asymmetric Laplace 
distribution of the form 

X = IY1 + (1 − I)(−Y2), 

where I ∼ Bernoulli(p) and the Yi’s are independent with Yi ∼ exp(λi), i = 1, 2. Again 
defneP P Pn n nU = 1 XiI(Xi > 0), V = − 1 XiI(Xi < 0), and W = 1 I(Xi > 0). 
We wish to estimate the parameters from a Bayesian viewpoint. In this case the 
likelihood will be 

L(p, λ1, λ2) = pwλw 
1 e
−λ1u(1 − p)n−wλn−we−λ2v ,2 

A conjugate prior with independent marginals is available in this case. Thus we can 
take ep ∼ Beta(τ1, τ2), and λi ∼ Γ(αi, δi), i = 1, 2. 
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The corresponding joint posterior density has independent marginals of the same form 
as in the prior. ep|X = x ∼ Beta(τ1 + w, τ2 + n − w), 

λ1|X = x ∼ Γ(α1 + w, δ1 + u), 

and 
λ2|X = x ∼ Γ(α2 + n − w, δ2 + v). 

As estimates of the parameters we can take the posterior means, i.e., 

τ1 + w 
p̂(B) = ,

τ1 + τ2 + n 

α1 + w 
λ̂ 1(B) = ,

δ1 + u 

and 
α2 + n − w

λ̂2(B) = . 
δ2 + v 

If the hyperparameters of the prior are negligible, these will reduce to agree with 
the mle’s w w n − w 

p̂ = , λ̂1 = and λ̂2 = . 
n u v 

Bivariate Models 

In Arnold (Arnold (2020)) two bivariate asymmetric Laplace models are described. 
The frst bivariate asymmetric Laplace model was introduced by Arvanitis (2018) and 
we refer the reader to that source for detailed discussion of the model. Construction 
of the model begins with the components used in developing the bivariate gamma 
difference model. Thus we begin with 8 independent gamma variables U1, U2, ..., U8 
with Uj ∼ Γ(δ j, 1), j = 1, 2, ..., 8.. We then defne (X, Y) by 

X = λ−1 
11 (U1 + U5 + U7) − λ−1 

12 (U3 + U6 + U8), 
(3.1) 

Y = λ−1 
22 (U4 + U5 + U8), 

where it is assumed that the constraints, δ1 + δ5 + δ7 = 1, δ3 + δ6 + δ8 = 1, δ2 + δ6 + δ7 = 1, 
and δ4 + δ5 + δ8 = 1, have been imposed. This model will be called the bivariate 

21 (U2 + U6 + U7) − λ−1 
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asymmetric Laplace model of the frst kind and if (X, Y) is as defned in (3.1) we will 
write (X, Y) ∼ BAL(1)(λ11, λ12, λ21, λ22, δ). Since there were four constraints on the δ j’s, 
this is an 8 parameter model. The marginal distributions depend only on the four λ 
parameters, thus: 

X ∼ AL(λ11, λ12), Y ∼ AL(λ21, λ22). (3.2) 

Moments are obtainable from the representation (3.1): 

E(X) = λ−1 
12 , (3.3)11 − λ−1 

(3.4)E(Y) = λ−1 
22 ,21 − λ−1 

var(X) = λ−2 
12 , (3.5)11 + λ−2 

var(Y) = λ−2 
22 , (3.6)21 + λ−2 

and 
cov(X, Y) = −λ−1 (3.7)11 λ

− 
22

1δ5 − λ12 
−1λ−1 

11 λ
−1 

12 λ
−1 

21 δ6 + λ−1 
21 δ7 + λ−1 

22 δ8. 

It is evident from (3.7), that a full range of correlations is available in this model. A 
submodel with non-negative correlations can be identifed by setting δ5 = δ6 = 0. 

The second bivariate asymmetric Laplace model that we will consider will utilize the 
closure under minimization property of the exponential distribution. For it we again 
begin with 8 independent random variables, V1, V2, ..., V8 but this time we assume that 
they are exponentially distributed, thus Vj ∼ exp(λ j), j = 1, 2, ..., 8. We then defne 

X = min{V1, V5, V7} − min{V3, V6, V8}, 

(3.8) 
Y = min{V2, V6, V7} − min{V4, V5, V8}, 

using a construction somewhat parallel to that used in the construction of models earlier 
described in this paper. If (X, Y) has the structure shown in (3.8) then we will write 
(X, Y) ∼ BAL(II)(λ) and say that it has a bivariate asymmetric Laplace distribution of the 
second kind with parameter vector λ. Note that both the frst kind and the second kind 
bivariate asymmetric Laplace distributions have an 8 dimensional parameter space. 
The marginal distributions of the BAL(II) distribution are of the asymmetric Laplace 
form. Thus: 

X ∼ AL(λ1 + λ5 + λ7, λ3 + λ6 + λ8), (3.9) 
Y ∼ AL(λ2 + λ6 + λ7, λ4 + λ5 + λ8), (3.10) 
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The moments of the BAL(II) distribution are thus given by: 

E(X) = [λ1 + λ5 + λ7]−1 
− [λ3 + λ6 + λ8]−1 , (3.11) 

E(Y) = [λ2 + λ6 + λ7]−1 
− [λ4 + λ5 + λ8]−1 , (3.12) 

var(X) = [λ1 + λ5 + λ7]−2 + [λ3 + λ6 + λ8]−2 , (3.13) 
var(Y) = [λ2 + λ6 + λ7]−2 + [λ4 + λ5 + λ8]−2 , (3.14) 

and 

cov(X, Y) = ξ(λ1 + λ5, λ2 + λ6, λ7) − ξ(λ1 + λ7, λ4 + λ8, λ5) 
(3.15) 

−ξ(λ3 + λ8, λ2 + λ7, λ6) + ξ(λ3 + λ6, λ4 + λ5, λ8), 

in which we use the notation ξ(τ1, τ2, τ3) to denote 

cov(min{W1, W3}, min{W2, W3}), 

where the Wi’s are independent with Wi ∼ exp(τi), i = 1, 2, 3. The value of ξ(τ1, τ2, τ3) 
is most easily approximated by simulation. In fact, one could just evaluate cov(X, Y) 
directly by simulation using the defnition (3.8). 

The joint distribution of (X, Y) ∼ BAL(II) will include a singular component since it 
is clear that the event {X = Y} has positive probability in this model (it will occur,for 
example, if U7 and U8 are the smallest of the Uj’s). 

Competing with these models, Kozubowski and Podgórski (2000a) consider elliptic-
ally symmetric bivariate and multivariate extensions of the basic model (2.1). In their 
notation, the one dimensional model has the following characteristic function. 

φX(t) = (1 + σ2t2 
− iµt)−1 , 

Analogously, a random vector X is said to have an m-dimensional K-P (Kozubowski 
and Podgórski) distribution if its joint characteristic function is of the form 

φX(t) = [1 + (1/2)t0Σt − iµ0t]−1 , (3.16) 

where µ ∈ Rm and Σ is a non-negative defnite symmetric matrix. The corresponding 
density function involves a Bessel function (except if m is odd). 

It is natural to seek bivariate versions of the generalized asymmetric Laplace (GAL) 
distribution. This can be achieved by modifying the BAL(I) or the BAL(II) by the 
introduction of two additional probability parameters. 
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The generalized version of the BAL(I) model may be defned as follows 

X = I1λ
−1 
11 (U1 + U5 + U7) − (1 − I1)λ−1 

12 (U3 + U6 + U8), 
(3.17) 

Y = I2λ
−1 
21 (U2 + U6 + U7) − (1 − I2)λ−1 

22 (U4 + U5 + U8), 

where it is assumed that the constraints, δ1 + δ5 + δ7 = 1, δ3 + δ6 + δ8 = 1, δ2 + δ6 + δ7 = 1, 
and δ4 + δ5 + δ8 = 1, have been imposed, and where the Ij’s are independent with 
Ij ∼ Bernoulli(pj), j = 1, 2. 

Means, variances and covariance of the coordinates of this random vector are not 
difficult to evaluate, or could be evaluated by simulation. 

The generalized version of the BAL(II) model may be defned as follows 

X = I1[min{(V1, V5, V7}] − (1 − I1)[min{V3, V6, V8}], 
(3.18) 

Y = I2[min{(V2, V6, V7}] − (1 − I2)[min{V4, V5, V8)}], 

where the λ j’s are positive parameters, and where the Ij’s are independent with Ij ∼ 
Bernoulli(pj), j = 1, 2. 

Means, variances and covariance of the coordinates of this random vector are also 
not difficult to evaluate, or could be evaluated by simulation. 

It should be noted that, for cases other than the independent case, the generalized 
version of the BAL(II) is a singular distribution. Specifcally, in all except the independe-�
nt case, some subset of the measure-zero set (x, y) : |x| = |y| is associated with a positive 
total probability. 

3.1 Parameter Estimation 

None of the full models described in this section are expected to be useful for practical 
purposes. Instead, the authors expect that they will be used as a source for smaller, 
more manageable, models. For all four of the bivariate models discussed, only a small 
collection of specifc cases may be described with available explicit expressions for their 
distribution functions, and even these distributions are rather complex. Therefore, 
unconventional methods for parameter estimation must be applied. These include 
Approximate Bayesian Computation, Modifed Maximum Likelihood, Statistical Learn-
ing Algorithms, and others. Approximate Bayesian Computation (ABC) is a particularly 
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attractive option for two reasons. First, as with all Bayesian methods, it permits the 
use of prior information. Second, and arguably more important, is the fact that, with 
models this complex, identifability may become an issue. By defning the set of metrics 
according to which the best ft is selected, the researchers may maintain a degree of 
control over the model’s usefulness. In the following sections, selected submodels will 
be described, and a parameter estimation method with this principle in mind for each 
will be suggested. However, the method of parameter estimation for models such as 
these should be at the discretion of the researcher for reasons already expressed. 

3.2 One-Parameter Submodels 

In this section, we will take a look at a pair of simple submodels of the BAL(I) and 
BAL(II) with similar characteristics and compare them. To begin, consider the sub-
model of the BAL(I) given by restricting its parameter space as follows: 

λ11 = 4, 
λ12 = 3, 
λ21 = 1, (3.19) 
λ22 = 4, 
δ5 ∈ [0, 1], 
δ6 = δ7 = δ8 = 0. 

We will call this Model M1. For the BAL(II), notice that as λ j −→ 0, Vj −→ ∞. 
Therefore, as long as at least one of the λ’s in each of the four sets; {λ1, λ5, λ7}, {λ3, λ6, λ8}, 
{λ2, λ5, λ8}, and {λ4, λ6, λ7}; is nonzero, we may apply a similar convention to the BAL(II) 
as with the BAL(I): λ j = 0 if and only if Vj ≡ ∞ and is, as such, larger than maxi:λi>0{Vi}. 
This effectively eliminates Vj from the model whenever λ j = 0. Under this convention, 
consider the simple sub-model of the BAL(II) by restricting its parameter space as 
follows: 

λ5 ∈ [0, 4], 
λ1 = λ4 = 4 − λ5, 

λ2 = 1, (3.20) 
λ3 = 3, 
λ6 = λ7 = λ8 = 0. 

We will call this Model M2. Then, both the M1 and M2 have only one parameter, include 
the independent case when that parameter is zero, and have the same fxed marginal 
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distributions. They therefore differ only in their dependence structure, and both can 
exhibit only non-positive correlations. In fact, when the parameters are nonzero, both 
exhibit similar tail dependencies. Contour plots of the densities for specifc values 
of δ5 (M1) and λ5 (M2) leading to equal correlations are shown in Figure 1. In the 
independent case, the contour plots would be diamond-shaped with straight-lined 
edges and radii along the axes proportional to inverses of the corresponding marginal 
parameters. For Model M1 and Model M2, we see that there is a clear tail dependency 
in Quadrant II, and the distinction between the shapes of these tail dependencies for 
each model is subtle but clearly identifable. This tail dependency arises in both cases 
since dependence between X and Y is signifcant only when U5 in Model M1 or V5 in 
Model M2 dominates over the other component random variables. When this happens, 
X will tend to be positive, and Y will tend to be negative. Pearson correlations remain 
fairly small (in absolute value) for these families, but for both distributions, they do 
have a (negative) monotonic relationship with the parameter, and including additional 
parameters can lead to increased correlations. Additionally, given tail dependencies 
are present, use of alternative measures of correlation is warranted. A comparison 
of the three most popular measures of correlation over the parameter spaces of M1 
and M2 is given in Figure 2. It should be noted that in the case that δ5 = 1 in Model 
M1, and λ5 = 4 in Model M2, the resultant distributions are identical, that is, at both 
the lower and upper extremes of the parameter spaces, the distributions of M1 and 
M2 are identical. Density plots of these two distributions are given in Figure 3. For 
the slightly more general case with arbitrary values of (λ11, λ12, λ21, λ22), the resultant 
BAL(I) density for this upper-bound distribution (δ5 = 1) is: � � ��−1 �λ12 λ21fXY(x, y) = λ12λ21 1 + + exp λ12x − λ21 y · 

λ11 λ22( 
1, x < 0 ∧ y > 0,n � � o 

λ12 λ21 
� (3.21)

exp − 1 + + max λ11x, −λ22y , otherwise.λ11 λ22 

This density for the corresponding BAL(II) model can be written with a simple change 
of parameters. Notice that this density has three rays from the origin marking where 
the density is not differentiable, while the independent case has four. In essence, this 
family focuses its dependence structure on one specifc tail dependency, also known as 
discordance, that which involves positive values of X and negative values of Y. The 
shapes of the densities in the remaining three quadrants are fairly unaffected by the 
parameter (though not entirely over all values in the parameter spaces). This would 
suggest that a means of proceeding with parameter estimation for this submodel of 
both M1 and M2 is a statistic which is most impacted by changes in this tail dependency, 
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e.g. Spearman’s Rho or Kendall’s Tau, rather than Pearson’s correlation. Both of these 
measures are shown in Figure 2. Spearman, in both cases, appears to be the steepest, 
and therefore may be the best choice for parameter estimation. The simulation results 
generating the correlation plots can be applied to construct a one-to-one mapping 
between the parameter and the statistic. 

3.3 Multi-Parameter Submodels 

As the one-parameter model discussed in Section 3.2 would readily suggest, freeing 
more of the δ’s in BAL(I) or λ’s in BAL(II) can lead to more complex models with 
multiple tail dependencies. Due to the intractability of the joint distributions, similar 
approaches, yet more complex, would need to be applied as those in Section 3.2 for 
parameter estimation where multiple interactions between the parameter estimators 
would need to be accounted for. 

The generalized BAL families exhibit many oddities that may be exploited by 
a researcher dealing with an unusual phenomenon. Consider the submodel of the 
generalized BAL(II) with the following parameter space: 

λ1 = λ2 = λ3 = λ4 = λ5 = λ8 = 1, 
λ6 = λ ∈ (0, ∞), 

λ7 = λ−1 , (3.22) 
p1 = p ∈ (0, 1), 
p2 = 1 − p1. 

We will call this Model M3. Some realizations of this family are shown in Figure 4. 

A method for estimating λ and p begins with realizing that: 

p = p1 = 1 − p2, and h p i 
λ = λ11 − 2 = λ12 − 2 = 

1
(λ21 ± (λ21 − 1)2 − 4) , (3.23)

2 

where, for convenience, we have set 

λ11 = λ1 + λ5 + λ7, 

λ12 = λ3 + λ6 + λ8, 

λ21 = λ2 + λ6 + λ7, and (3.24) 
λ22 = λ4 + λ5 + λ8. 
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The (marginal) maximum likelihood estimators for p1, p2, λ11, λ12, λ21, and λ22 are 
given by (2.8). Lastly, assume priors of p ∼ Beta(α, β) and λ ∼ Γ(τ, η), where η is a rate 
parameter. With this construction, we can apply ABC with the goal of minimizing: 

�
S1 = p̃1 − (1 − p̃2)

�2 , and S2 = [max {Wλ} − min {Wλ}]2 , (3.25) 

where 

" q #! 
Wλ = λ̃ 11 − 2, λ̃ 12 − 2, 

1
(λ̃ 21 ± (λ̃ 21 − 1)2 − 4) , (3.26)

2 

if it exists, and p̃1, p̃2, λ̃ 11, λ̃ 12, λ̃ 21, λ̃ 22 are the mle’s of p1, p2, λ11, λ12, λ21, and λ22, 
respectively. 
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Figure 1: Contour plots of Model M1 for δ5 = 0.5908 (top) and Model M2 for λ5 = 3 
(bottom) densities. The former plot was generated using numerical integration, while 
the latter was computed via straight simulation. 
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Figure 2: Correlations for M1 (top row) and M2 (bottom row) using the three methods. 
With exception of the Pearson for M1, which can be computed directly, these were 
obtained by simulation. 
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Figure 3: Densities of M1 and M2 when δ5 = 0 and λ5 = 0, respectively (left); and when 
δ5 = 1 and λ5 = 4, respectively (right). 
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Figure 4: Realizations of Model M3 for various values of λ and p. 



79 

4 

Asymmetric Laplace Distributions 

Simulations 

The parameters of the BAL(I) model have specifc meanings. As noted previously, the 
λ’s completely determine the marginal distributions in a convenient manner. The δ’s 
have more subtle impacts on the distribution. To illustrate, Figure 5 shows how the δ 
parameters relate to specifc weighted correlations. 
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Figure 5: Relationship between δ’s and weighted Pearson correlations of data in the 
four quadrants. For example, S5 is computed by considering only the data in QII, and 
the correlation weights are simply the values of the maximum of the two coordinates 
(in absolute value), so that greater weight is given to points farther from the origin. S5 
and S6 are the negatives of the weighted correlations so that all four are shown to have 
a positive monotonic relationship with the corresponding parameters. The correlation 
values were truncated at 0. 
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While each data point in the plots is computed from a simulated dataset of size 
10,000, it should be noted that all eight parameters were free, allowing the many 
interactions between the parameters to create additional variation. Nonetheless, it 
can be seen by these plots that the parameters do have a clear monotonic relationship 
with this specifc set of weighted correlations. The other three bivariate distributions 
discussed will exhibit similar (but undoubtedly more complex) relationships, but 
they will become more apparent when appropriate submodels are chosen for specifc 
applications. 

5 Conclusions 

In this paper, two alternative specifcations of univariate asymmetric Laplace models 
were described and investigated. Generalized versions of these were also introduced. 
Finally, bivariate extensions of these models were discussed in some detail, and 
particular emphasis was placed on associated parameter estimation strategies. We 
showed that these models can generate large classes of families of distributions, rich 
with submodels encompassing a multitude of dependence structures. The two classes 
of bivariate models studied both include unique benefts for researchers, particularly 
when unusual phenomena are studied. 

Higher dimensional versions of the BAL(I), BAL(II), GBAL(I), GBAL(II) are readily 
described. In addition, discrete versions of the BAL(I) and BAL(II) models (which could 
be denoted by BDAL(I) and BDAL(II)) can be defned in which geometric and negative 
binomial variables play the roles of the exponential and gamma variables in BAL(I) and 
BAL(II). Likewise, discrete versions of GBAL(I) and GBAL(II) can be described. These 
will be discussed in a separate report. 
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