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Abstract  

 Ratios of strength properties of lumber are commonly used 
to calculate property values for standards. Although origi-
nally proposed in terms of means, ratios are being applied 
without regard to position in the distribution. It is now 
known that lumber strength properties are generally not 
normally distributed. Therefore, nonparametric methods are 
often used to derive property values. In some situations, 
estimating properties based on a parametric estimate is re-
quired. For these situations, the three-parameter Weibull 
distribution looks promising. To use this approach, proce-
dures for estimating confidence intervals for ratios of p
centiles from two Weibull populations are needed. In this 
study, we employed the large sample properties of maximum 
likelihood estimators to obtain a confidence interval for the 
ratio of 100α-th percentiles from two different three-
parameter Weibull distributions. The coverage probabilities 
were investigated by a computer simulation study. We con-
cluded that the procedure has considerable promise, but 
many questions remain to be answered. 
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Introduction Most of these ratios were originally established by analysis 

of mean trends. However, they are being applied without 
regard to position in the distribution. Recent studies have 
begun to focus on the ratio of properties at other percentile 
levels, especially the fifth percentile. These include studies 
of the effect of rate of loading on tensile strength (Gerhards 
and others 1984), the effect of moisture content on flexural 
strength (Aplin and others 1986; McLain and others 1984), 
and the effect of redrying on the strength of CCA-treated 
lumber (Barnes and Mitchell 1984). 

The ratio of two property estimates is commonly used in 
engineering design codes to establish allowable properties. 
For example, dry�green ratios (the ratio of small clear 
specimens dried to 12% moisture content to matched green 
specimens) are given in ASTM D2555 for a number of 
timber species (ASTM 1997b) and may be used to calculate 
allowable properties. Also, an E/G ratio of 16 is assumed in 
ASTM D2915 (ASTM 1997c) for adjusting the flexural 
modulus of elasticity (MOE) based on any span to depth 
ratio and several loading modes. As a third example, ASTM 
D245 specifies �strength ratios in tension parallel to grain 
are 55% of the corresponding bending strength ratios� 
(ASTM 1997a). Strength ratios are the strength that wood 
with a defect (like knots) is expected to have compared with 
the strength of a clear piece of wood. So ASTM D245 is 
saying that a defect lowering the bending strength to 80% of 
a clear piece (a strength ratio of 80%) would lower the ten-
sile strength to 44% (0.80 times 0.55) of the clear wood 
specimen bending strength. 

It was once commonly assumed that lumber strength proper-
ties were normally distributed. It is now generally recog-
nized that lumber strength properties are not normally dis-
tributed. Usually, nonparametric methods are now used for 
deriving allowable lumber properties (ASTM 1997c). In 
some situations, however, a parametric estimate of lumber 
properties for reliability-based design is required. Based on 
empirical evidence (Aplin and others 1986, Bodig 1977, 
Hoyle and others 1979, McLain and others 1984, Pierce 
1976, Warren 1973), it is the three-parameter Weibull that 
emerges as a serious candidate. To use this parametric ap-
proach to estimate ratios of lumber properties, it is necessary 
to develop procedures for estimating confidence intervals for 
ratios of percentiles from two Weibull populations. 

Ratios often are used when it is not practical, or perhaps not 
possible, to conduct tests for all combinations of factors 
(such as grades, sizes, test modes, environmental conditions) 
that may affect allowable properties. In wood engineering, 
the usual practice has been to conduct extensive tests for one 
combination of factors and to develop ratios for adjusting 
allowable properties from the measured combination of 
factors to a different set of factors. A primary example of 
this problem is estimating tensile strength parallel to the 
grain. Due to experimental difficulties in determining the 
strength of wood stressed in tension parallel to the grain, 
relatively little data exist on which to base allowable tensile 
properties. Thus, tensile strength has historically been esti-
mated as a percentage of bending strength (Galligan and 
others 1979). A similar approach is taken in estimating  
the strength of lumber at various moisture content levels 
(ASTM 1997a, b). 

Typically the variability of ratio estimators can be very large. 
An underestimate of the property in the denominator and a 
corresponding overestimate of the property in the numerator 
of the ratio can result in a large estimate of the ratio. Corre-
spondingly, an overestimate in the denominator and an 
underestimate in the numerator can produce a small estimate 
of a ratio. Since many decisions regarding ASTM standards 
are based on confidence intervals associated with an estimate 
of the ratio of properties, it is important to develop the best 
confidence limits on this ratio. The objective of this paper 
was to develop and evaluate procedures to create confidence 
intervals that have approximately 90% or 95% nominal 
coverage for the ratio of percentiles from two different  

 



 

be maximum likelihood estimates obtained from the two 
samples. 

three-parameter Weibull populations. In an earlier study, 
Johnson and Haskell (1984) investigated large sample toler-
ance bounds and confidence intervals for percentiles from a 
single three-parameter Weibull distribution. In the Proce-
dures section of this paper, we develop three large sample 
confidence interval procedures based on the earlier work of 
Johnson and Haskell and one procedure based on order 
statistics. Using simulation techniques, we then evaluate the 
performance of a large sample approximation to the distribu-
tion of an estimate of a percentile ratio. 

In the single sample setting, Johnson and Haskell (1984) 
derived a large sample approximation for confidence inter-
vals of percentiles from a Weibull distribution. Their  
100(1 � γ)% confidence interval for the 100(1 � α)  
population percentile is 
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Procedures 
if occurs at the interior of Ω, where Ω is the 

parameter space (see Johnson and Haskell (1984) for a more 
thorough discussion of the parameter space) and 
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Method 1 
Let us assume we have two populations, both of which 
follow a Weibull distribution. Let X
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, . . ., Xn1 be a sample of 
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cumulative distribution function 
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with probability density function f(x) and 100α-th percentile 
given by 

where 
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Let Y1, . . . ,Yn2 be a sample of size n2 from the second 
Weibull population, which has the cumulative distribution 
function 

22 2( ) 1 exp[ {( ) / } ] ,    aG y y c b y c= − − − ≥  and I is the observed Fisher information matrix. The  
information matrix can be estimated by 

with probability density function g(y) and 100α-th percentile 
given by 2
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where (w1, w2, w3) = (a, b, c). The second-order partial  
derivatives of the log-likelihood going into this estimated 
information matrix are 

Then the ratio of the population 100α-th percentiles is  
given by 
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when neither shape parameter estimate equals 1. The in- 
equalities of the ratios will hold unless 

22 2 2
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was negative. Since all values of a random variable with a 
Weibull distribution are assumed to be greater than or equal 
to the location parameter (c ≥ 0), any negative estimate of 
the lower confidence limit of ξ2α can be replaced by 0, which 
would maintain the inequality. If either or both shape pa-
rameter estimates equal 1, then the modified maximum 
likelihood estimate and confidence interval based on the 
two-parameter exponential distribution can be used. 

Since any combination of γ1 and γ2 that meet our restriction 
can be chosen, the procedure above can lead to a variety of 
confidence intervals for the same two sets of data. We could 
produce a �shortest� confidence interval by searching for the 
values of γ1 and γ2 that produce the shortest confidence 
interval. However, it is not clear that we would achieve the 
desired coverage with a shortest confidence interval and with 
the coverage dependent on the estimates of ξ1α, ξ2α, σ1α, and 
σ2α as well as γ1 and γ2. It is also not clear that this procedure 
would lead to a simple confidence interval for our ratio. 

So we can estimate the variance by 
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Method 2 
If the estimated shape parameter has value 1, placing it on 
the boundary of the parameter space, Johnson and Haskell 
(1984) recommend using a modified maximum likelihood 
solution for the two-parameter exponential distribution. In 
this case, we take 

Instead, it might be better to employ maximum likelihood 
estimators to obtain a large sample approximation to the 
distribution of 
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This suggests the large sample approximation 
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Then a large sample approximate (1 � γ) 100% confidence 
interval for ξ1α/ξ2α is given by 

2
2 21 1
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(1 � γ1)(1 � γ2) = (1 � γ), then by independence 
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Method 3 Since X(r1) and Y(s2) are independent, 

Note that a similar procedure could be obtained by  
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If we exponentiate the resulting interval for ln(ξ1α/ξ2α), we 
can get a confidence interval that would be expected to work 
well if the normal distribution is a good approximation to where 

1
1

1
1

1
( )[ ] ( )[1 ( )]

n
n jj

r
j r

n
P X zy F zy F zy

j
−

=

 
< = − 

 
∑  

�ln( ),     1,2i iαξ =  

Method 4 
and 

Finally, we can get a conservative confidence interval based 
on order statistics. If the sample size is sufficiently large, it is 
well known that r1 and s1 can be selected so that the order 
statistics X(r1) and X(s1) satisfy 

2 2
2

12

2 2 2

!
( ) ( ) ( )[1 ( )]

( 1)!( )!
2s n s

s
ng y G y g y G y

s n s
− −= −

− −
 

where X has cumulative distribution F and Y has cumulative 
distribution G. The result can be simplified further by  
writing 
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where (1 �γ1)(1 � γ2) ≥ 1 �γ, then Thus, given the true parameters for the two Weibull distribu-
tions, we could calculate an exact coverage probability for 
our confidence interval. 1 1 2
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Computer Simulation 

Since random variables with a Weibull distribution assume 
values greater than or equal to the location parameter, which 
is greater than or equal to zero, all of the order statistics will 
be greater than or equal to zero, which maintains the i
quality. So the interval 
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has probability at least 1 � γ of covering ξ1α/ξ2α 

Although four order statistics are involved in the confidence 
limits, it is possible to express the exact coverage probability 
in terms of a single numerical calculation.  
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Of the four methods of developing confidence intervals for 
ratios of Weibull percentiles, method 2 appears to offer the 
most promise of giving a unique solution that is not encum-
bered by having to pick two significance levels whose prod-
uct is the significance level we want for our interval. To 
evaluate the statistical properties of this large sample confi-
dence interval procedure using a simulation study, we gener-
ated an ordered sample of uniform random numbers, using 
IMSL (1987) subroutines and then converted these to 
Weibull variates from a specified Weibull population. Each 
value of these observations could, for instance, represent the 
modulus of rupture for a hypothetical piece of lumber. A 
second sample was generated in a similar manner from 
another Weibull distribution. Maximum likelihood estimates 
of the Weibull parameters and corresponding percentile 
estimates for the 2nd, 5th, 10th, 30th, 50th, 70th, 90th, 95th, 
and 98th percentiles were calculated for each sample. The 
5th percentile was of primary interest since design values for 
strength properties are often 5th percentile estimates. The 
two sets of maximum likelihood estimators were then  
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Table 1�Parameters for the nine runs 

Run 
Shape 

1 
Shape 

2 
Location 1/ 

scale 1 
Location 2/ 

scale 2 

1 0 0 0 0 
2 1 0 2 1 
3 2 0 1 2 
4 0 1 2 2 
5 1 1 1 0 
6 2 1 0 1 
7 0 2 1 1 
8 1 2 0 2 
9 2 2 2 0 

 
 
Table 2�Values selected for the factorial design  

 Coded values 

Weibull parameter 0 1 2 

Shape 1 2.00 2.75 3.50 
Shape 2 2.00 2.75 3.50 
Location 1/Scale 1 0.1 0.4 0.7 
Location 2/Scale 2 0.1 0.4 0.7 
 
 
Table 3�Scale parameters obtained with set  
location parameters 

 Coded values for location/scale 

Weibull parameter 0 1 2 

Scale 1 5 1.25 0.7142857 
Scale 2 5 1.25 0.7142857 

combined according to the confidence interval procedure 
detailed in the Procedures section. 

Nine runs were used to evaluate the coverage of the large 
sample confidence intervals for the ratio of the percentiles 
from two different three-parameter Weibull distributions. 
Earlier studies (Johnson and Haskell 1983, 1984) indicated 
that sample sizes of at least 100 are required to obtain rela-
tively small variances and somewhat accurate normal ap-
proximations to the percentile estimates in the single popula-
tion case. 

For each run of our simulation, the sample sizes n1 = 100 
and n2 = 100 were used. There were 250 replications at each 
set of conditions. The nine runs were a one-ninth run of a 
3×3×3×3 factorial design as shown in Table 1. We selected 
the particular values as shown in Table 2. 

These particular values were selected after examination of 
the parameter estimates in McLain and others (1984) and 
Aplin and others (1986), which are typical of lumber indus-
try applications. The particular location/scale ratios were 
achieved by keeping the location parameters fixed.  
Specifically, we selected 

location 1 = location 2 = 0.5 

which meant the scale parameters associated with the coded 
values were as shown in Table 3. 

Results and Conclusions 
Tables 4 and 5 present the empirical coverage proportions 
and the average length of the intervals for both the approxi-
mate 95% and 90% confidence intervals. From Table 4, we 
see that, at the lower percentiles, the coverage of the 95% 
intervals is poorest for run 8, run 2, and run 5, in that order. 
The shape parameter for the first population is 2.75 for all 
these cases, but this cannot be pinpointed as the single cause 
because so many other parameters are changing. Because  
the runs were designed as discussed in section 3 to be a 
fractional factorial with main effects shape 1, shape 2,  
location 1/scale 1, and location 2/scale 2 , we can analyze 
them as such to get an idea of the sensitivity of our coverage 
probabilities to the parameters. Table 6 gives the mean 
square errors of the four main effects on the response vari-
able coverage probabilities. The larger the mean square 
error, the more sensitive the result was to that effect. Table 7 
gives the rankings of the effects from Table 6. Table 7 shows 
that for percentiles in the tail of our distribution, our 95% 
confidence intervals are most sensitive to the shape parame-
ter of the Weibull distribution in the numerator. 

 

In view of the coverages for a single population percentile 
presented in Johnson and Haskell (1984), this was almost 
better than could be expected. We again analyzed the cover-
age probabilities as a fractional factorial design. We see in 
Table 8 that our 90% confidence intervals are most sensitive 
to the shape parameter of the Weibull distribution in the 
numerator. 

What should we conclude from all this? This is a very small 
study, but it does indicate that the procedure has consider-
able promise. A great deal more work should be completed 
before we can be sure that the promise is a reality.  

 The pattern is not so distinctive for the 90% confidence 
intervals (Table 5). Most importantly, the proportion of 
intervals that cover the true ratio of population percentiles is 
quite close to the nominal value in most cases considered. 
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Table 4�Proportion of 95% intervals that cover the true ratio of percentiles 
(average length is given as the second entry)a 

 Population percentiles (alpha) 

Run 0.02 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.98 

1 0.9040 0.9240 0.9440 0.9560 0.9400 0.9480 0.9400 0.9480 0.9520 
 0.7979 0.5661 0.4762 0.3696 0.3059 0.2675 0.2845 0.3172 0.3634 
2 0.8920 0.9160 0.9280 0.9080 0.9240 0.9320 0.9560 0.9680 0.9680 
 0.3020 0.2352 0.2063 0.1672 0.1383 0.1184 0.1201 0.1310 0.1467 
3 0.9280 0.9240 0.9320 0.9520 0.9600 0.9480 0.9480 0.9520 0.9560 
 0.4686 0.3626 0.3173 0.2738 0.2393 0.2134 0.2248 0.2486 0.2822 
4 0.9280 0.9400 0.9400 0.9360 0.9440 0.9240 0.9240 0.9320 0.9280 
 0.2245 0.1805 0.1671 0.1634 0.1572 0.1577 0.1912 0.2265 0.2765 
5 0.9040 0.9160 0.9240 0.9360 0.9480 0.9560 0.9560 0.9540 0.9600 
 0.2617 0.1611 0.1194 0.0812 0.0650 0.0551 0.0565 0.0627 0.0719 
6 0.9480 0.9480 0.9480 0.9480 0.9560 0.9440 0.9520 0.9600 0.9520 
 1.3807 0.9966 0.8130 0.6359 0.5442 0.4817 0.5111 0.5744 0.6675 
7 0.9320 0.9520 0.9400 0.9480 0.9520 0.9560 0.9480 0.9600 0.9520 
 0.2820 0.2138 0.1918 0.1838 0.1773 0.1769 0.2201 0.2628 0.3237 
8 0.8760 0.9080 0.9280 0.9480 0.9640 0.9680 0.9520 0.9440 0.9520 
 1.2538 0.9864 0.8744 0.7951 0.7438 0.7153 0.8433 0.9895 1.2015 
9 0.8920 0.9240 0.9360 0.9440 0.9520 0.9560 0.9600 0.9560 0.9520 
 0.1568 0.0938 0.0667 0.0427 0.0337 0.0281 0.0281 0.0311 0.0357 

an1 = 100, n2 = 100, 250 replications. 
 
 
Table 5�Proportion of 90% intervals that cover the true ratio of percentiles 
(average length is given as the second entry)a 

 Population percentiles (alpha) 

Run 0.02 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.98 

1 0.8560 0.8680 0.8920 0.9040 0.9040 0.8920 0.8800 0.8880 0.8920 
 0.6696 0.4751 0.3997 0.3102 0.2567 0.2245 0.2388 0.2662 0.3050 

2 0.8440 0.8520 0.8640 0.8640 0.8680 0.8880 0.9080 0.9000 0.8960 
 0.2534 0.1974 0.1731 0.1403 0.1161 0.0993 0.1008 0.1099 0.1231 

3 0.8800 0.8560 0.8600 0.8920 0.9000 0.9120 0.9360 0.9320 0.9160 
 0.3933 0.3043 0.2663 0.2298 0.2008 0.1791 0.1887 0.2087 0.2368 

4 0.8800 0.8800 0.8960 0.9040 0.8960 0.8880 0.8760 0.8800 0.8920 
 0.1884 0.1515 0.1402 0.1371 0.1319 0.1307 0.1605 0.1901 0.2320 

5 0.8560 0.8640 0.8760 0.8720 0.8920 0.8920 0.9240 0.9240 0.9200 
 0.2196 0.1352 0.1002 0.0682 0.0546 0.0463 0.0474 0.0526 0.0604 

6 0.8800 0.8960 0.9000 0.9000 0.9200 0.9200 0.9200 0.9040 0.9240 
 1.1587 0.8364 0.6823 0.5337 0.4567 0.4043 0.4289 0.4820 0.5601 

7 0.8840 0.8840 0.9000 0.8960 0.9160 0.8880 0.9120 0.9160 0.9320 
 0.2367 0.1794 0.1610 0.1543 0.1488 0.1484 0.1847 0.2205 0.2716 

8 0.8240 0.8600 0.8680 0.9040 0.9000 0.9200 0.9040 0.9080 0.9040 
 1.0522 0.8278 0.7338 0.6673 0.6242 0.6003 0.7078 0.8304 1.0084 

9 0.8800 0.8640 0.8800 0.8880 0.9160 0.9240 0.9160 0.9000 0.8920 
 0.1316 0.0788 0.0560 0.0359 0.0282 0.0236 0.0236 0.0261 0.0300 

an1 = 100, n2 = 100, 250 replications. 
 



 

Table 6�Mean square errors for the effects of the Weibull parameters from analysis of the proportion of  
95% intervals that cover the true ratio of percentilesa 

 Population percentiles (alpha) 

 0.02 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.98 

Shape 1 0.00098311 0.00051733 0.00018311 0.00027911 0.00011378 0.00006933 0.00027911 0.00008133 0.00019378 
Shape 2 0.00056178 0.00013333 0.00000711 0.00005511 0.00016178 0.00032533 0.00006578 0.00004133 0.00010844 
Location 1/ 
scale 1 

0.00023644 0.00001600 0.00004978 0.00036978 0.00017778 0.00025600 0.00001244 0.00001733 0.00003378 

Location 2/ 
scale 2 

0.00043378 0.00026133 0.00002311 0.00011378 0.00011911 0.00006933 0.00011378 0.00030000 0.00011911 

an1 = 100, n2 =100, 250 replications. 
 
 
 
 

Table 7�Relative importancea of the effects of the Weibull parameters from analysis of 
the proportion of 95% intervals that cover the true ratio of percentilesb 

 Population percentiles (alpha) 

 0.02 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.98 

Shape 1 1 1 1 2 4 3 1 2 1 
Shape 2 2 3 4 4 2 1 3 3 3 
Location 1/scale 1 4 4 2 1 1 2 4 4 4 
Location 2/scale 2 3 2 3 3 3 3 2 1 2 
aImportance is rated on a scale of 1 to 4, 1 being most important and 4 least. 
bn1 = 100, n2 = 100, 250 replications. 

 
 
 
 

Table 8�Relative importancea of the effects of the Weibull parameters from analysis of 
the proportion of 90% intervals that cover the true ratio of percentilesb 

 Population percentiles (alpha) 

 0.02 0.05 0.10 0.30 0.50 0.70 0.90 0.95 0.98 

Shape 1 1 2 1 1 1 1 1 2 4 
Shape 2 3 1 2 4 2 2 4 3 3 
Location 1/scale 1 2 4 4 2 3 2 2 1 1 
Location 2/scale 2 4 3 3 3 4 4 3 4 2 
aImportance is rated on a scale of 1 to 4, 1 being most important and 4 least. 
bn1 = 100, n2 = 100, 250 replications. 
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Some of the things that need to be done or questions we 
should try to answer are as follows: 

1. We need to look at a wider range of shape, scale, and 
location parameters in a way that allows us to look for in-
teractions in the variables. For wood-related applications, 
shape parameters from 1 to 10 would be a good range. 
Since the shape parameter is related to the coefficient of 
variation of data from a two-parameter Weibull, can we 
model the relationship of variability of the data and the 
needed sample size to get intervals of a certain width on 
ratios of percentiles? 

2. It would simplify the simulation work if we could show 
that ratios of parameters (like location to scale) were the 
important factors. 

3. The number of replications in this study was much too 
small. With the variability that comes with estimating 
Weibull parameters, we might need 1,000 to 10,000 repli-
cations to get four decimal place accuracy on our coverage 
probabilities. We certainly need to find out how many rep-
lications it takes to get highly repeatable results. 

4. We need to look at different sample sizes. How good is 
this procedure when we have 400 in each distribution  
of 40? 

5. We need to look at the design aspects of the problem. If 
we have 300 green wood specimens, how many should we 
dry to estimate a dry/green ratio for the material? 

6. Can we get a closed form solution for the problem? If we 
go to a two-parameter Weibull distribution, how does this 
change things? 

7. We also need to look at the other methods for confidence 
limits. How well does the nonparametric procedure 
(method 4) work? If we use method 3, how do confidence 
intervals it produces compare with the method 2 intervals? 
Is there an easy way in method 1 to pick our confidence 
levels to get a shortest confidence interval? 

8. We could also expand the problem to other distributional 
forms. Both the normal and lognormal distributions are 
very useful in wood-related research. 

Clearly several questions could be looked at, and the results 
in this paper imply that the procedure does have promise and 
should be investigated further. 
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