FOREST PRODUCTS LABORATORY
FOREST SERVICE
U.S. DEPARTMENT OF AGRICULTURE

MADISON, WISCONSIN

The use of trade, firm, or corporation names in this publication is for the information and convenience of the reader. Such use does not constitute an official endorsement or approval by the U.S. Department of Agriculture of any product or service to the exclusion of others which may be suitable.

COMPUTER OPTIMIZATION OF CUTTING YIELD FROM MULTIPLE-RIPPEDBOARDS
 By

Abigail R.Stern
and
Kent A. McDonald
Forest Products Laboratory," Forest Service

U.S. Department of Agriculture

INTRODUCTION

Multiple ripping of boards, followed by crosscutting to remove defects, is an operation used by both the hardwood flooring and the softwood cut-up industries. Because of the rising cost of lumber and the increasing demand on the timber supply, utilizing each board more efficiently is becoming more important.

The two steps in making better processing decisions to improve utilization of each board are to: (1) automatically locate defects, and (2) optimize sawline placement based on defect locations.

A system that automatically locates defects in lumber has been developed and is being tested at the Forest Products Laboratory ${ }^{2 /}$. Boards are scanned with ultrasound under computer control and defect location data are automatically collected. The computer program used was designed to: (1) control the scanning process, (2) store collected data on tape, (3) optimize sawline placement based on defect locations, and (4) draw the board and cutting solution on a line plotter.

The purpose of this paper is to describe RIPYLD (RIP YieLD)-that part of the computer program that optimizes sawline placement for maximum yield. RIPYLD obtains the multiple ripping and crosscutting solutions using defect location data, and is an expansion of earlier efforts to maximize cutting yields of boards using computer analyses ${ }^{3}$, 4, ${ }^{5}$. In RIPYLD, any kerf width
can be used and cuttings can be any length (either random or specified), and any width.

RIPYLD has the option of manufacturing either specified length cuttings or random length cuttings. Up to five cutting lengths and three cutting widths can be used in the specified length option. If the random length option is chosen, three cutting widths and minimum acceptable cutting length must be specified.

Sawing variables are the maximum number of rip saws to be used on any board, and the sawkerf, which will be used in both the rip cuts and crosscuts.

[^0]
PROGRAM RIPYLD

Input

Input parameters that must be specified for the RIPYLD program are: (a) board and defect information, (b) cutting bill requirements, and (c) sawing variables.

An X-Y coordinate system grid is superimposed on the board, and each unit grid area is designated as either defective (1) or clear (0) (fig. 1). The number of X -grids in the length, the number of Y -grids in the width, and the sizes of X -grid and Y -grid (in inches) must be specified.

Description

First, all possible combinations of rip widths that will fit within the width of the
board are determined and stored. For example, if the possible rip widths are $2,2.5$, and 3 inches and there are four rip saws available, there are $3^{4}=81$ possible permutations of rip widths to try. However, if the board is 9 inches wide and the kerf is 0.125 inches, only 27 permutations, including kerfs, will fit within the width of the board (table 1).

Then, for each stored combination of rip widths, the board is "sawn" by the computer. The board is always ripped first, with the first rip width always positioned at the edge of the board with the lowest Y coordinate. Solutions with the first rip positioned at the other edge of the board are not considered. After ripping, the clear areas within each rip are located.

If random lengths are desired, only defects and lengths shorter than the

Table 1. -- Rip combinations of $2.0^{\prime \prime}, 2.5^{\prime \prime}$, and $3.0^{\prime \prime}$ that fit in 9 " wide board

Rip widths (in.)				Total width (in.) (including 0.125" kerf between rips)
1st Rip	2ndRip	3rdRip	4th Rip	
20	2.0	2.0	2.0	8.375
20	20	20	2.5	8.875
20	20	25	20	8.875
20	20	3.0	.-	7.250
20	25	20	20	8.875
20	2.5	25	20	7.250
20	25	3.0	.-	7.750
20	3.0	20	..	7.250
20	3.0	25	--	7.750
20	3.0	3.0	..	8.250
2.5	2.0	2.0	2.0	8.875
25	20	25	..	7.250
2.5	2.0	3.0	..	7.750
25	25	2.0	.-	7.250
25	25	2.5	.-	7.750
25	25	3.0	.-	8.250
25	3.0	20	--	7.750
25	3.0	25	--	8.250
25	3.0	3.0	..	8.750
3.0	2.0	2.0	--	7.250
3.0	20	2.5	--	7.750
3.0	20	3.0	-	8.250
3.0	25	20	..	7.750
3.0	25	25	--	8.250
3.0	25	3.0	--	8.750
3.0	3.0	2.0	.-	8.250
3.0	3.0	25	--	8.750

Figure 1.--In the $X-Y$ coordinate system grid superimposed on the board, each unit grid area is designated as either defective (1) or clear (0).
specified minimum cutting length are removed by crosscutting. Otherwise, specified lengths are made by crosscutting the clear areas and removing the defects. Longest cuttings are always salvaged first even if a higher yield would result from a combination of shorter cuttings.

For each clear cutting found and cut out, surface area of the cutting is calculated. Surface areas of cuttings are summed to obtain the total yield of the board.

After total yield of clear cuttings from the board for a rip combination is calculated, the yield is compared to the previous maximum yield. If the new yield is greater, it is stored as the new maximum. The new yield is also compared to the previous minimum yield and, if less, becomes the new minimum.
output
Output from RIPYLD contains complete information about both the maximum and minimum yield solutions. Included are the percent yield of clear cuttings from the board, the rip width combination, the crosscut locations, and a piece tally if the specified length option is used.

At the Forest Products Laboratory, the same computer (Harris 6024) that is used to collect defect information from the Defectoscope ${ }^{2}$ is used to control a line plotter. The minimum or maximum solution is plotted, including the outline of the board, defect locations, rip cuts, and crosscuts. Alternatively, theoutput could bedirected to computer controlled saws, stored an tape, or displayed on a TV screen or printer.

Examples of the plots with RIPYLD solutions are shown in figures 2 through 6. A 90 -inch long, 9 -inch wide board with the defects found by the Defectoscope, was outlined on a data grid 0.5 inch by 05 inch (fig.2).

The board was "sawn" with a $0.125-\mathrm{inch}$ kerf, into random-length cuttings with a minimum length of 10 inches. RIPYLD chose between rip widths of 2 ", 2.5 ", and 3 ". The optimum yield of 80.84 percent was achieved with a rip combination of 2", 2.5", 2", 2" (fig. 3). The minimum solution with a 65.73 percent yield was from a rip combination of $2^{\prime \prime}$, $2^{\prime \prime}, 3^{\prime \prime}$ (fig. 4). There was not enough room for another rip at the top of the board, so 1.625 " was not utilized.

The same board was again "sawn" with a 0.125 -inch kerf and combinations of 2 ", $2.5^{\prime \prime}$, and 3 " rip widths (figs. 5, 6). However, here the specified length option was used with a choice of $50^{\prime \prime}, 40^{\prime \prime}, 30^{\prime \prime}, 20^{\prime \prime}$, and $10^{\prime \prime}$ cuttings. Piece tallies are included on the plots. The optimum solution (fig. 5) was a $2.5^{\prime \prime}, 2^{\prime \prime}, 2^{\prime \prime}, 2^{\prime \prime}$ rip combination with 54.80 percent yield. The minimum solution of 44.94 percent yield (fig. 6) was found with a rip width combination of 2", 2", 3". Again, the top 1.625 " of the board was not utilized.

SUMMARY

RIPYLD is a computer program that optimizes the cutting yield from multiple-ripped boards. Decisions are based on automatically collected defect information, cutting bill requirements, and sawing variables. The yield of clear cuttings from a board is calculated for every possible permutation of specified rip widths and both the maximum and minimum percent yield solutions are saved. Solutions include rip cut and crosscut locations as well as the percent yield of clear cuttings.

Figure 2.--Defectswere outlined by the Defectoscope on a grid of 0.5 inch by 0.5 inch.

- Figure 3.--The board in figure 2 was "sawn" by the computer, into random-length cuttings, 10 -inch minimum. This optimum yield of 81% was achieved with a rip combination of $2^{\prime \prime}, 2.5^{\prime \prime}, 2^{\prime \prime}$, and $2^{\prime \prime}$.

Figure 4.--Minimum solution for the same board yielded 65%, with a rip combination of $2^{\prime \prime}, 2^{\prime \prime}, 3^{\prime \prime}$.

Figure 5.--The same board "sawn" again, this time with specifiedlength cuttings ranging from 50 " to 10 ", yielded an optimum of 55% from rips of $2.5^{\prime \prime}, 2^{\prime \prime}, 2^{\prime \prime}, 2^{\prime \prime}$.

Figure 6.--The minimum solution for the same conditions was 45% from rips of 2", 2", 3".

APPENDIXI

RIPYLD Variables

```
Input
            Dimensions of data grid
            NP - number of grid units in the board length
            NSCANS - number of grid units in the board width
            XGRID - length of unit grid on X axis (inches)
            YGRID - width of unit grid on Y axis (inches)
Defect information
            BOARD(NSCANS,NP) = 0 if the grid unit is clear
                                    = 1 if the grid unit is a defect
Cutting bill
    NWIDTH - number of rip widths to choose from (maximum of 3)
    WIDTH(3) - up to 3 widths can be specified (inches)
    RANDOM=TRUE - random length cuttings
    SAWMIN - minimum length acceptable cutting
    RANDOM=FALSE - specified length cuttings
        NLEN - number of specified cutting lengths (maximum of 5)
        CUTLEN(5) - up to 5 lengths (inches)
            (Must be in order: CUTLEN(1)=maximum)
```


Sawing variables

```
NSAW - number of rip saws available
KERF - sawkerf for both ripping and crosscutting
Rip combinations
RIPCOM( 81,4 ) - combinations of rip widths that fit in the board width.
(Maximum 81 combinations, 4 rip saws)
NRIP(81) - number of rips that will fit in the board width for each combination stored in RIPCOM
Solutions
\begin{tabular}{ll} 
MINCOM & \begin{tabular}{l}
-index to RIPCOM and NRIP of the lowest yield combination \\
MAXCOM
\end{tabular} \\
REJECT =TRUE \\
-index to RIPCOM and NRIP of the highest yield combination. \\
-no clear cuttings can be found for any rip combination.
\end{tabular}
```


Variables used in flowcharts

I	- present grid position on X axis
BEG	- beginning of defect (grid number)
END	- last defect grid encountered
CLRKNT	- number of clear grids encountered since last defectgrid
MINLEN	- number of grid units in the minimum cutting length
XCUT	- subroutine to store crosscut locations and to calculate yield
NP	- number of X-grids in the board
RANDOM = TRUE	- random length option

SUBROUTINE RIPYLD

```
SUBROUTINE RIPYLD
¢
*** PLACES THE RIP CUTS ON A BGARD TD OBTAIN TNE IGXIMMM YIELD
*** OF CLEAR CUTTINGS. (RIP YIELD)
    IMPLICIT INTLGER(A-Z)
    REAL KERF,SUM, WIDTH, XGRID, YGRID, YDIST, SAUMIN, YIELD,AREA
    1 CLRYD.CROSS
    LOGICAL REJECT, FULL.,MATT.H
    DITENSIOH COUNT (4).CYCLE (4),WE:(4)
    COMTMON /SM, MAX,MFXCOM,MIN,MINCOM,NRIP (O1),NSAU,NSCAN5,
        NLJDTH,REJECT.SALMIN,YGKID.YIELD(3)
            COTTMON/STO/ r.ROSS(150,3),RIPCOM(B1,4).NP,NXCUT(4,3),XGRID.
                WIDTH(3),PIECE(5,3,3)
    COMAON /SRMX/ KERF
    CDNTON MX/ACTIVE,AYAIL,BEG,CLRYLD,CORB,END,I,RIP
***!F THE BOARD IS SHORTER THAN THE SIYLLEST CUTTIHIG LENGTH
*** REJECT THE BOARD
    REJECT - .TRUE
    IF (NP*XGRID.LT.SALMIN) RETURN
*** CALCUL&TE ALL POSSIBLE PFRHNTATIONS OF CUTTING UIDTHS
*** STORE ALL UNIQUE ORDERED COHTINAIONS OF WIDTHS THAT WILL
*** FIT IN THE BDARD IN RIPCOM(BI,4).
*** MRXIMUM NUMEER OF CUTTING UIDTHS - 
*** HAXIMUM NUMEER OF RIP SALS = 4
** TIRXIMNM PERINTATIONS * E1
*** INITIALIZE
    NPERM-NWIDTH**NSA
    CYCLE(1)=NPERM/NWIDTH
    DO 110 J=1.NSAW
        Wx(J)=1
            COUNT(J)-0
            IF (J.NE.1)CYCLE (J) =CYCL.E.(J-1)/NLIDTH
110 CONTINUF
    COMB=0
C
*** FOR ENCH POSSIBLE COM日INOTION. FIRST DETERMINE HOL MANY
*** OF THE RIPS WILL FIT IN THE EOARD WIDTH.
*** SECOND, CHECK TD SEE IF THE CONBINATION HAS BEEN PREVIOUSLY
*** STORED.
        DO 140 PERM=1.NPERYM
            Sum=0.
            FULL=.FALSE.
            DO 139 J=1.NSAL
        COUNT(J)=COUNT (J) +
```

:
C

```
IF (COUNT (J).LE.CYCLE (J) 3 GO TO 128
129
\(\omega \times(5)=\omega X(J)+\)
IF (LSX(J).GT. NUIDTH)LOX(J) \(=\)
\(\operatorname{COUNT}(\mathrm{J})=\)
IF (FULL) GO TO 130
TEMP \(=1 \times(\mathrm{J})\)
SUM-SUM+UIDTH(TEMP) +KERF
IF (SUM.LE.NSCANS*YGRID+KERF.AND.J.NE.NSAL) GO TD 138
LL-.TRUE
NR=J-
IF (SUM.LE.HSCANS*YTRID+KFRF.AND.J.EQ.NSAL) NR-NSAL
IF (COMB.NE. 日) GO TO 123
C
*** STORE THE FIRST RIP COMEINATION IN RIPCOM
DO \(122 K=1.4\)
CONTINUE
MRIP (1)
MRIP (1) - NR
COME-1
GO TO 130
:
*** DETERMINE IF THE NEU RIP COIBINAION HAS BEEN PREVIOUSLY STORED.
*** IF NOT, STORE IT IN RIPCOM.
123 NCOMB=COM
    DO \(128 \mathrm{I}=1\). NCOM
    MATCH=. TRUE.
            DO 125 RIP=1
            IF (RIPCOM(I.RIP).EO.WX(RIP)) GO TO 125
                MATCH=.FALSE
125 CONTINUE
IF (MATCH) GO TD 130
128 CONTINUE
COME-COME +
            DO \(126 \mathrm{~K}=1\),
                DO \(126 \mathrm{~K}=1.4\)
                \(\operatorname{RIPCOM}(\) COMA,\(K)=\) LX \((K)\)
26 CONTINUE
                NR IP (COMR) =NR
130 CONTINUE
143 CONTINUE
    NCOME=COMR
[ *** FOR EACH COMBINATION IN RIPCOM. PLALE THE RIP CUTS. SCAN
*** FOR DEFECTS. PLACE CROSSCUTS AND CALCULATE THE YIELD
*** CALL XCUT TO STORE CROSSCUTS AND CALCULATE YIELD FOR EACH
***: CLEAR CUTTING
```


ACTIVE $=$

```
\(1 \mathrm{~A}_{1} \times=2\)
MiN-3
YIELD(3)=-1.
YIELD(2) \(=.001\)
AREA-NP*NSCAN5*XGRID*YGRID
```


SYMBOL NAME	REFERE EXC	NCED LUDIN	$\begin{aligned} & \text { AT } \\ & \text { NG } \\ & \hline 1 \end{aligned}$	INES BPROGR	(MINUS RAM C	MEAN	NS SYM AND E	boL Quiva	$\begin{aligned} & \text { DEFINE } \\ & \text { ENCE) } \end{aligned}$									
active		-182	116	123	156	160	158	178	173	177	183	-184	191	193-194				
AREA	8	-107	156															
AVAIL		-110																
BEG	17	-127	-142															
Board	132																	
CLRKNT	-129	-135	140	-144	147													
CLRYLD	8	17	-111	156														
core	17	-42	65	-73	79	-88	90	92	95	-189	121	124	167	182192				
count	11	-39	-53	54	-57													
CROSS	8	14	-170															
CYCLE	11	-36	-40	54														
END	17	-129	-143	-147														
FULL	18	-51	58	-62														
1	17	-80	83	-114	116	-130	132	142	143	-146	-169	178	-172	173-175	177			
IFIX	126	150																
J	- 37	38	39	40	-52	53	54	55	56	57	59	61	63	64-115	116 -	-131	132-176	177
		79	-89															
KERF	8	16	68	61	64	149												
Match	18	-81	-84	86														
max	12	-103	160	184	-105													
maxcom	12	-182																
MIN	12	-184	168	170	173	177	191		-195									
mincom	12	-167	-192															
minlen	-18B	140	147.															
12	17																	
NCOM	-79	80	-95	189														
NP	14	23	107	138	146	147												
NPERM	-35	36	49															
NR	-63	-64	72	82	92	-121	122											
NRIP	12	-72	-92	121														
NSAU	12	35	37	52	61	64												
NSCANS	12	61	64	107								STATE	EMENT BER	DEFINED AT LINE				
NLIDTH	12	35	36	40	56										REFERE	ENCED	AT LINES	
NXCUT PERM	14 -49	-123	-173										110	41	37			
PIECE			-177										129	58	54			
REJECT	10	12	-22	161	-166								122	71	69			
RIP	17	-82	83	-122	123	124							125	85	82			
RIPCOM	14	-70	83	-98	124								125	85 91	89	83		
RIPYLD	,												128	87	99			
SALMIN	${ }^{\text {日 }}$	12	23	108									138	93	52	58	$61 \quad 74$	86
SM	12												140	94	49			
${ }_{\text {SRMX }}$	16												150	117	114	115		
Sum	8	-50	-60	61	64								258	140	133			
TEMP	-59	60	-124	125	-183	185	-193	195					300	143	149			
WIDTH	${ }^{8}$	14	-60	125									508	145	130	136		
${ }^{\text {WX }}$	${ }_{14}^{11}$	-38	-55	56	59	78	83	98					558	151	122			
XGRID	8	14	23	107	108								581	171	163			
YDIST	8	-112	-125	125	-149	150							582	174	172			
YGRID	-	12	61	64	107	126	150						583	178	175	176		
YHI	-126	131											595	182	161			
Y!ELD YLOU,	-113	12 131	-185 -150	-186	-156	160	-168	191					-5980	191 196	160	186	191	

SUBROUTINE XCUT

```
\begin{tabular}{ll} 
199: & SUBROUTINE XCUT \\
200: & ITPLICIT INTEGER (A-Z) \\
201: & REAL CLRYLD.KERF, XGRID. CROSS, CLRLEN, START, CUTLEN, WIDTH \\
202: & LOGICAL RANDOM
\end{tabular}
COMTMOH SAX CUTLEN(5),NLEN.RANDOM
COMTON STK CROSS(150,3),RIPCOM(B1,4),NP,NKCUT(4,3),XGRID.
                                CROSS(150,3),RIPCOM(B1,
COMTON SSRTX KERF
COMTON SRRTW KERF 
    IF(END.EQ.&) GO TO 110
    IF (.NOT.RANDOM) GO TD 100
    IF(BEG.EO.1) GO TO 100
    4:c
    214:C
    216: C
    217:
    217:
    219:
    219:
    221: C*
    222: C *** PLACE CROSSCUT AT END OF PREVIOUS DEFECT
    223: C
    223:
226: C
228: C
229: C
231:
232: [
SUBROUTINE XCUT
IMPLICIT INTEGER(A-Z)
RERL CLRYLD.KERF XGRID,CROSS, CLRLEN, START, CUTLEN,WIDTH
206:
CROSS(AVAIL ACTIVE) DBEG*XGRID
AVAIL -AVAIL+1
NXCUT(RIP,ACTIVE)=NXCUT(RIP,ACTIVE) +1
0B IF(EHD.EO.NP) RETURN
CROSS (AVAIL, ACTIVE)=(END+1)*XGRID-KERF
AVAIL *AVAIL+1
NXCUT(RIP, AP,TIVE) =NXCUT(RIP, ACTIVE) +1
*** CALCULATE LENGTH OF CLEAR AREA.
110 CLRLEN = ( (I-END)-1)*XGRID
232: C
IF (.NDT. RANDOM) GO TO 150
```

234:	C	TEMP -RIPCOM(COME.RIP)
236:		CLRYLD -CLRYLD+CLRLEN*UIDTH(TEMP)
237:		RETURN
238:	C	
239:	C	
249 :	[***	CALCULATE SPECIFIED LENGTH CUTTINGS TO FIT in Clear area.
241:	[
242:	150	START-(END+1)*XGR ID
243 :	208	DO $250 \mathrm{~J}=1 . \mathrm{NLEN}$
244:		JS-J
245 :		IF (CLRLEN.GE.CUTLEN(J)) GO TO 300
246:	250	CONTINUE
247:		RETURN
248:	C	
249:	C	
250:	C	
251:		CLRLEN=CLRLEN-CUTLEN(JS)-KERF

$4.0-13-9-78$

SYMBOL
NAME

ACTIVE

AVRI
CLRLEM
CLRLEN
CLRYL
COMB
CROSS
CUTLEN
END
END
\mathbf{I}
\mathbf{J}
J
JERF
MX
NLEN
NP
NTU
WNOT
PIECE
RAHDOI
RIP
RIPCOM
RIPCOM
SHX
SRIX
STXX
SRIX
START
START
SX
TETP
LIDTH
WIDTH
GRID

REFERENCED AT LINES (MINUS MEANS SMTEDL DEFINED. EXCLUDING SUBPROGRRM CALLS AND EOUIYALEMCE:
$\begin{array}{llllllll}207 & 217 & 219 & 224 & 226 & 255 & 257 & 261\end{array}$ $\begin{array}{lllllll}207 & 217 & 219 & 224 & 226 & 255 & 257 \\ 207 & 217 & -218 & 224 & -225 & 255 & -256\end{array}$
$207 \quad 213 \quad 217$
201 -230 $236 \quad 245$-251
201 207-236 -
$\begin{array}{rrr}201 & 287 & -236 \\ 207 & 235 & 259\end{array}$
$\begin{array}{llrrrr}207 & 235 & 259 & & \\ 201 & 204 & -217 & -224 & -255\end{array}$
$\begin{array}{rrrrrrr}201 & 203 & 245 & 251 & 255 & 258 & 260\end{array}$
$\begin{array}{lllllll}281 & 203 & 245 & 251 & 255 & 258 \\ 207 & 211 & 220 & 224 & 239 & 242\end{array}$ $\begin{array}{llllll}207 & 211 & 220 & 224 & 230 & 24\end{array}$
$\begin{array}{ll}207 & 23 \\ -243 & 24\end{array}$
$\begin{array}{llllll}243 & 244 & 245 & & & \\ 244 & 251 & 255 & 258 & 260 & 261\end{array}$
$\begin{array}{lllll}244 & 251 & 255 & 258 & 260 \\ 201 & 206 & 224 & 25! & 258\end{array}$
201
$\begin{array}{ll}203 & 243 \\ 284 & 220\end{array}$
$\begin{array}{lrl}284 & 229 & \\ 204 & -219 & -226\end{array}-257$
$\begin{array}{rrrr}284 & -219 & -226 & -257 \\ 284 & -261 & & \\ 202 & 203 & 212 & 231\end{array}$
$\begin{array}{llllll}202 & 203 & 212 & 231 & & \\ 207 & 219 & 226 & 235 & 257 & 259\end{array}$ $\begin{array}{lll}207 & 219 & 226 \\ 294 & 235 & 259\end{array}$
204
$\begin{array}{llll}206 & -242 & 255 & -258\end{array}$
$\begin{array}{lllll}203 & 236 & -259 & 260 & 261\end{array}$
$\begin{array}{rrrr}231 & 236 & -259 & 260 \\ 204 & 236 & 260\end{array}$
$\begin{array}{llllll}199 & 201 & 204 & 217 & 224 & 230 \\ 2012\end{array}$

STATETENT DEFINED
NUMEERT DEFINED
REFERENCED AT LINES

180	220	212	213
118	230	211	
158	242	231	
208	243	262	
258	246	243	
380	251	245	

[^0]: 1/ The Laboratory is maintained in Madison, Wisconsin, in cooperation with the University of Wisconsin.

 2/ McDonald, Kent A. 1978. Lumber defect detection by ultrasonics. USDA For. Serv. Res. Pap. FPL 311. For. Prod. Lab., Madison, Wis.

 3/ Wodzinski, Claudia, and Eldona Hahm. 1966. A computer program to determine yields of lumber. USDA For. Serv., For. Prod. Lab., Madison, Wis.

 4/ Erickson, Bernard J., and Donald C. Markstrom. 1972. Predicting softwood cutting yields by computer. USDA For. Sew. Res. Pap. RM-98. Rocky Mountain For. Range. Exp. Sta., Fort Collins, Colo.

 5/ Cornwell. Larry W., and John K. Kalita. 1977. The development of a computer program to automate the cutting of gunstock blanks. Dept. of Mathematics. Western Illinois University, Macomb, III.

