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ABSTRACT 
Reliability analysis is a mathematical 

technique for appraising the design and 
materials of engineered structures to provide a 
quantitative estimate of probability of failure. 
Two or more cases which are similar in all 
respects but one may be analyzed by this 
method; the contrast between the probabilities 
of failure for these cases allows strong 
analytical focus on the case differences. This 
comparative procedure is known as differen
tial reliability analysis. The technique is 
demonstrated by means of an example in
volving a simple truss member. 

Applications of reliability analysis impor
tant to truss design are discussed. Differential 
reliability analysis is shown to be of value for 
code calibration purposes-that is, for 
evaluating new products or structural systems 
in terms of the prevailing practice. Reliability 
analysis can also be valuable for predicting 
future design-and-use payoff for investments 
in material properties research. 

This paper is Journal Paper 701D of 
the Purdue Agricultural Experiment 
Station. 
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INTRODUCTION 
Reliability methods of design are of in

creasing interest today in structural engineer
ing for all materials, including wood. Reliability 
based design considers the probability that the 
structure will last a given length of time against 
the agents that can cause it to fail. The prin
cipal agent is. of course, load but others such 
as fire or decay can be dealt with using the 
same theory. 

Probabilistic approaches are a natural 
way to solve structural design problems. The 
design process always concerns itself with 
structures yet to be fabricated and yet to be 
subjected to loads. These events lie in the 
future, and the systematic way to appraise the 
future is via application of probability con
cepts. 

A recent paper by Zahn (9) 3/ introduces 
the subject of reliability analysis for wood and 
covers the fundamentals of both philosophy 
and method. The present paper continues the 
development with further explorations into the 
realm of wood truss engineering. 

This research is part of a series of studies 
designed to explore the sensitivity of product 
performance to variations in material proper
ties. Emphasis is placed on the wood truss 
because It is the component of the light frame 
house most consistently subject to engineer
ing analysis. 

THE CONCEPT OF 
DIFFERENTIAL RELIABILITY 

The reliability analysis of a structure, 
while lucid in theory, can becomplicated in ac
tual detail. Such analysis as presented here 
consists of a load distribution which Is 
mathematically associated with a resistance or 
strength distribution to produce a single result 
called the probability of failure. This number 
may be based on a series of necessary 
assumptions: once calculated. its magnitude 
can have great value, but only to an engineer 
who understands probability analysis. One ad
vantage is that the process used is realistic as 
well as multifaceted: The precision of the es
timated probability of failure is limited only by 
data and not by lack of processes for 
mathematical assembly of the answer. 
Nevertheless, the contemporary application of 
reliability will include many technical problems 
inherent in the introduction of a new concept. 

1/ S. K. Suddarth is Professor of Wood Engineering at 
Purdue University, Lafayette, Ind. F. E. Woeste is 
Assistant Professor of Agricultural Engineering at 
Virginia Polytechnic institute and State University. 
Blacksburg, Va. W. L. Galligan is Research Engineer 
with the U.S. Forest Products Laboratory. This paper 
was prepared as a cooperative effort of Purdue 
University and the U.S. Forest Products Laboratory. 

2/ Maintained at Madison, Wis., in cooperation with the 
University of Wisconsin. 
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Specifically, incomplete information on both 
load and resistance will suggest caution In 
assessing the significance of unique 
calculations of the probability of failure. On the 
other hand, incomplete data need not retard 
immediate application of reliability where the 
technique can focus on differences between 
elements of the design process. 

When studies of two or more cases are 
made, the contrast between the probabilities 
of failure for these cases allows strong 
analytical focus on the case differences. This 
strong analytic advantage occurs because all 
of the assumptions involved in one case can 
also be carried through for the others in a. 
completely formal way. 

As an example of this concept, consider a 
structural component built with two alternative 
materials–perhaps a low variability lumber In 
one case and high variability lumber in the 
second-eachsubjected to reliability analysis. 
The necessary assumptions of integrity of the 
samples in representing such factors as pop
ulation. consistent quality of fabrication, dis
tribution of loads, and time scale can be iden
tical tor both cases. The identity between 
cases of all but the focus variable gives special 
significance to the comparison of probabilities 
of failure calculated for each case. These 
probabilities are measures of relative safety 
which open the way for new quantitative com
parisons. A particular case can be chosen as a 
benchmark of proven acceptable safety and all 
the other cases ranked against it. One might 
name the procedure more formally as differen
tial reliability analysis. Two cases having equal 
failure probability have the same margin of 
Safety under the analytic constraints used for 
both cases. 

One immediate use for the methodology 
of differential reliability is to test the degree to 
which failure probability is sensitive to 
changes In characteristics of the variables that 
comprise the ingredients of an analysis. This 
approach makes It possible to identify which 
variable Characteristics are of major impor
tance and which are of minor importance in 
terms of result. More efficient use of research 
funds can result from such knowledge. Also, it 
is possible to quantitatively appraise the 
effects of quality control In materials prepara
tion. fabrication. and structural maintenance, a 
vitally needed measure impossible to attain 
until now. 

Differential reliability is also of value for 
code calibration (1,8,9). New methods of 
engineering or new structural systems, believ
ed to represent improvements, must be 
evaluated by comparison with methods or 
products currently in use. The new method 
must result in performance or safety at least as 
good as the performance of the original. A 
current example in engineering analysis is the 
movement toward techniques involving limit 
states design ( 1 ) .  These techniques differ 
sharply in some respects from those used in 
traditional deterministic design. The new fac
tors and considerations in limit states design 
must be properly evaluated so that designs by 
the new process are equivalent to old designs 
for the same end use. At the same time, treat
ment of alternative materials must be 
equitable. Concepts of differential reliability 
offer one method of evaluating such alter
natives. 

Application to a Member 
Subjected to Combined Loads 

The potential of differential reliability is 
best shown by an example which also il
lustrates the process of producing compatible 
resistance and load functions for an actual 
case relevant to truss design. The sample 
structure is a bending member having a single 
concentrated load. P, also subjected to a ten
sile load. Q (fig. 1). The design criterion of in
terest in this example is the well-known in
teraction equation which requires the 
following: 

(1) 

where 

fb = 	 3PL = the bending stress resulting from 

2bh
2 the load P. 

Fb = the allowable bending stress for 
the structural lumber, which, in 
this example, is estimated as a 
fifth percentile value from a 
simulated distribution of bending 
test strength divided by 2.1 = 
2.899 pounds per square inch 
(lb/in.2). The 2.1 factor is an ad
justment for load duration and 
safety factor (2). 
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Figure 1.–This structure, which serves as an 
example in the analysis. is a lumber 
bending member bearing a single 
concentrated load, P. while also being 
subjected to a tensile load. Q. The loads 
have been proportioned so that both 

Qft = bh the tensile stress resulting from 
the load Q. 

Ft = allowable tensile stress for the 
structural lumber. which, in this 
example, is estimated as a fifth 
percentile value from a simulated 
distr ibut ion of tensile test 
strength divided by 2.1 = 1,352 
Ib/in.2 

The details of arriving at allowable stresses 
(2.899 Ib/in.2 for Fb and 1.352 lb/in.2 for Ft) will 
be discussed later. The parameters of this 
problem have been worked out so that the 
bending stress and the tensile stress are 
equally important. These requirements are 
met by 

(2) 

which will produce a structure that is exactly at 
the traditional design limit. In summary, the 
case shown in figure 1 represents the com
bined load effects found in structures such as 
trusses where the members have been sized 
properly. The questions now are: What 
engineering qualities can reliability analysis 
add to the present knowledge of this structure, 
and what new information may be needed to 
accomplish this? 

To begin a reliability approach, a criterion 
of failure is needed. One such criterion can be 
derived from the historical way that combined 
stresses are handled. This is expressed in for
mula (1). the traditional interaction formula. 
This expression becomes a failure criterion 

the bending stress and tensile stresses 
are one-half of their respective allowable 
values. This structure simulates a member 
from a more generalized structure such 
as a truss. 
(M 145658) 

when modified by inserting actual bending 
strength and actual tensile strength in the cor
responding denominators in place of the 
allowable values, Fb and Ft . A strength fraction 
results which may be expressed algebraically 
as follows: 

(3) 

where 
B = modulus of rupture of the lumber and 
T = tensile strength of the lumber. 
B and T are seen to be random variables. I’ is 
also a random variable with a failure criterion 
at unit value. When is one or more, the struc
ture can be considered as having failed. 

Equation (3) offers a somewhat simplistic 
failure criterion but is easily understood, and 
its shortcomings when compared with more 
sophisticated theory of failure are offset to a 
degree in differential reliability applications. 
Two or more cases will always be under study, 
and the application of the same failure 
criterion to both makes it more of a standard 
reference point than an absolute level of 
failure. 

Equation (3) reveals that fb and ft can also 
be random variables if the load Is a random 
variable. For the moment, we shall hold the 
load constant at the figure 1 values and 
develop a distribution for I’ under those loads. 
Later considerations will lead to the more 
classic form of solution Involving resistance 
and load distributions. 
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Monte Carlo Analysis 
A Monte Carlo simulation is used in this 

development because it is ideally suited for 
application in indeterminate structures such as 
wood trusses and frames. Monte Carlo 
techniques are well known and have been 
used extensively in cases where more formal 
mathematical procedures become intractable. 
The procedure generates a distribution for I' 
using a large number of repeated solutions of 
the sample structure; in each a typical pair of 
random variable values, B and T, are used. 
The results of these multiple trials can be 
collected together into a histogram to which an, 
appropriate probability density function can be' 
fitted. 

The simple task of Monte Carlo trials 
becomes more complex when one considers 
that the B, T pair must relate to the same 
lumber piece and that Band Tare mutually ex
clusive properties. If the bending strength of a 
piece is known, it is impossible to determine its 
tensile strength and vice versa. This problem is 
serious where combined stresses are utilized. 
It will be considered more carefully as the 
technical detail of this analysis is developed. 

Strength Prediction Model 
The B, T pair needed for input must 

realistically characterize the lumber being 
modeled in the analysis. If the lumber is the 
product of a grading system in which B, T pair 
values are assigned, presumably the analytic 
or predictive model of the grading system 
could be used to assign pair values for simula
tion. Unfortunately. such an approach would 
be very complex, particularly for visually grad
ed lumber, and could constitute a research 
program in itself. This is because the grading 
system is complex and is very difficult to 
reduce to an analytic model. Further, it may be 
desirable when using differential reliability to 
compare lumber from different sorting 
systems or lumber units known beforehand to 
have characteristic differences. A common 
prediction system is therefore necessary to 
most easily make differential reliability com
parisons. 

Research interests in recent years have 
led to the accumulation of data relating 
modulus of elasticity. E. to B and independent
ly to T. While this. of course, is a major element 
in mechanical grading, a useful correlation 

between E, B, and T often can be shown in 
data derived by other sorting means. The 
choice of E, as a predictor, therefore, permits 
equal differential reliability treatment of data 
from differing sources. 

In a fully developed analysis, a unique E 
value (measured by the same technique in all 
cases) would be used to predict both B and T. 
Further, this value ideally should be an E 
cross-referenced to a common base through 
appropriate standards procedures (e.g., 
ASTM D 2915 (2)). This initial differential 
reliability analysis has relied upon an available 
data set which does not meet ideal criteria but 
does permit relating bending E (Eb) to B and 
tensile E (Et ) to T. 

Figure 2 shows a plot of the Eb versus B 
data along with the weighted lines which 
bound 99 percent of the residuals. For Monte 
Carlo simulation of lumber B values, the 
regression line and residual characteristics are 
necessary. The repeated process is one of 
randomly selecting an Eb value from a suitable 
distribution. calculating the corresponding B 
value given by the regression, and then, with a 

Figure 2.–Eb versus B data along with the 
weighted least squares regression line. 
The assumptions of the regression model 
are that the residual variance. s2B,Eb. 
is proportional to E and that the residuals 
are normally distributed. Under these 
assumptions the curved lines bound 99 
percent of the residuals. (M 145655) 
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dom generation process for B values. The 
resulting distribution of generated B values 
can only be realistic if it resembles the original 
distribution determined by tests (fig. 3). Visual 
resemblance was chosen as the criterion for 
acceptance of the regression model. 

To produce a B distribution judged ap
propriate, the proper statistical representation 
of the residual variance was necessary. For 
this data set the premise adopted is that 
residual variance Is proportional to E. Com
parison of the histogram of actual B values 
with the histogram of generated B values sup
ports the choice of statistical treatment for the 
data. 

Figure 4 is similar to figure 2 but relates to 
the tensile strength analysis. The treatment of 
these two figures is paralles except that it was 
found necessary to make a logarithmic 
transformation on tessile strength to obtain 
realistic generation results. Again, simulated 

Figure 3.–The lower histogram was formed 
from the 100 test data. With the test data 
and its companion Eb, an E-B strength 
model was developed. From this model 
100 simulated B data were generated, 
and these are shown in the upper 
histogram. (M 145 659) 

tensile data (fig. 4) mimicked the experimental 
data (fig. 5). 

Figure 4.–Et versus the natural logarithm of 
data, T,ln(T), along with the weighted 
least squares regression line. The 
assumptions of the regression model are 
that the In(T) residual variance, 
s2ln(T),Et, is proportional to Et and that 
the residuals are normally distributed. 
Under these assumptions the curved lines 
bound 99 percent of the residuals. 

(M 145 656) 

5 



responds closely to that recommended in the 
National Design Specification (5). The dis
tributional form was chosen to be lognormal. 

By the random selection of many E 
values, a corresponding number of tensile and 
bending strength values can be calculated 
from the regression equations (figs. 2 and 4). 
The 5-percent exclusion limits can be es
timated from the data sets by methods of 
ASTM D-2915. By simulating 5,000 E values, 
the 5-percent exclusion limit for bending 
strength was 6,030 lb/in.2 and for tensile 
strength 2,812 Ib/in.2 These exclusion limits 
were further divided by 2.1. This placed the 
simulated population on a basis consistent 
with that applied to commercial truss lumber 
(2); the resulting stress grade for this sample 
set has allowable stresses of 2,899 Ib/in.2 In 
bending and 1,352 Ib/in.2 in tension. These 
were the values used in setting up the structure 
in figure 1. 

GENERATION OF 
Figure 5.–Simulated T data closely resemble 

the skewed test data. From the 96 test 
data an E-T model was developed to 
simulate 96 data points, shown in the 
upper histogram. (M 145 661) 

CONSTRUCTION OF A 
SIMULATED STRESS GRADE 

Each piece of lumber must be assigned a 
single E value. However, as would be ex
pected, the average E values and coefficients 
of variation (cvE) of the two data sets shown in 
figures 2 and 4 are not the same. The average 
value for the Eb data was 1.85 million Ib/in.2 
with a cvE of 0.221. The average value of the Et 
data was 2.13 million Ib/in. 2 with a cvE of 
0.203. For simulation it is reasonable to pick a 
working E distribution with an average lying 
between the averages of the two E data sets. 
This choice Insures reasonable subsequent 
use of the regression equations which can only 
be valid in the range from which they were 
derived. The variance of the selected distribu
tion must also be representative of both the Eb 
and Et data sets. These considerations lead to 
the selection of an E distribution with an 
average of 2 million Ib/in.2 and cvE of 0.21 for 
use in the simulation study. This cvE cor-

PROBABILITY OF FAILURE 
Conditional Probability of 

Failure at Design Load 
The procedures developed-lumber 

grade simulation, strength prediction model
ing, the modified interaction formula (r), and 
the Monte Carlo procedure-werenow com
bined to calculate probability of failure. The 
process began with generation of piece 
properties to be used for a member subject to 
combined stress. In review, the first step was 
random selection of E followed by a random 
generation of Busing the relationship shown in 
figure 2. Then, again using the chosen E, a T 
value was generated in the same way using the 
relationship shown in figure 4. Such a process 
generates uncorrelated B and T values. The 
lack of correlation implies an assumption 
which can be difficult to accept; the effect of 
this assumption will be examined later. 

The computer generates 5,000 sets of E, 
B, T combinations representing 5,000 pieces 
of typical lumber. On a repeated basis, each of 
the 5,000 lumber bending tensile members is 
subjected to analysis using formula 3, 
resulting in 5,000 values of the strength frac
tion, I', which can be assembled in histogram 
form and a curve fitted to the data (fig. 6). The 
area to the right of I' = 1 is the probability of 
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failure of the structure for the given loads. This 
only reflects variability in the structural 
resistance under design load and does not yet 
reflect load variability. As the reliability 
procedure is further broadened, load variabili
ty will be considered. 

Figure 6.–The histogram of calculated I' 
values for 5,000 lumber bending-tensile 
members. For this illustration the cvE = 
0.21 and the residual correlation equals 
zero. The area to the right of I' = 1 under 
the fitted density curve is the probability 
of failure of the structure under the 
constant loads P and Q. (M 145 663) 

Formulation of A Generalized 
Probability of Failure 

A linear analytic system, common to most 
applications in wood frame engineering, is 
used for the structure of figure 1. if this struc
ture were part of a truss, changes in the exter
nal load system would result in proportional 
effects on P end Q. If formula 3 is expressed in 
terms of basic quantities, 

(4) 

and, if P and Q are changed proportionally by 
the load system to nP and nQ, then I' becomes 
nI' in direct proportion to the load change fac
tor, n. if the distribution of load is known, it can 

be related to an n scale with n = 1 being the 
level that produces the original design values 
of P and Q (fig. 7). When n = 2. both P and Q 
are doubled; when n = 1/2. both P and Q are 
halved. The load is now expressed as a ran
dom variable, n, and the criterion of failure is 
characterized by nI' at unity or greater. The 
probability of failure, pf, can be characterized 
in the expression 

(5) 

Operating on the expression within the bracket 
produces a more familiar form 

(6) 

which corresponds to the classical formulation 
for probability of faliure (4) which is stated in 
standard notation as: 

(7) 

where 
S = the random load variable and 

Figure 7.–The random load variable n is 
shown. The value of "1" on the abscissa 
corresponds to design load on the 
structure, "2" corresponds to 2 times 
design load, and so forth. Loads less than 
design load are most common while loads 
greater than design load are unlikely. 

(M 145 662) 
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R = the random resistance variable in 
dimensions relevant to the load 
variable such as pounds, pound-
inches, or lb/in.2 

Note that while n corresponds to S and 
1/ I' corresponds to R, n and 1/I'are dimen
sionless variables. Probability statements per
tinent to S and R distributions are equally per
tinent to n and 1/I'distributions. 

Given formula 7, probability of failure is 
traditionally formulated as 

(8) 

where 
fR(r) = the probability density function of 

resistance and 
fS(s) = the probability density function of 

load. 
With certain types of probability density func
tions for S and R, the integration can be per
formed in closed form. in other instances, 
computer based numerical methods are readi
ly available. A more detailed explanation of the 
probability of failure integral is given in the 
appendix. 

In the case under study, the lognormal 
distribution was found to fit well to the 
calculated distribution of I' (fig. 6). When I' is 
lognormally distributed, 1/ I' is also lognormal
ly distributed (fig. 8). Because of this, and 
because other studies (e.g., Corotis (3)) have 
found it to be a logical choice, the lognormal 
distribution was also selected to represent 
load. This relatively simple choice was made 
because this report Involves many complex
ities which, at least in early stages, could only 
be met with estimates and approximations. 

The load distribution (fig. 7) can be 
shifted along the horizontal axis according to 
the judgment of the engineer and the data he 
may possess. This is a matter of estimating the 
likely occurrence of loads equal to or greater 
than design load. In a recent study of floor 
loads, Corotis (3) concluded that the present 
design load levels are close to the 99.9 percent 
cumulative levels for observed floor loads. To 
agree with this, the figure 7 load curve should 
be located so that the area under the curve to 
the right of 1 on the horizontal axis totals 0.001. 
The coefficient of variation of the load was 

taken to be 0.30 as recommended for live load 
by Siu et ai. (8). 

Lognormais and other nonnegative dis
tribution functions make good sense in 
applications of load and resistance in which 
negative quantities have no meaning. 
Nevertheless. the direct applicability of many 
classical distribution functions should be 
further considered. Good approximation 
methods currently available make it possible 
to examine logical boundaries on random 
variables other than zero and infinity. For in
stance, it appears illogical that lumber of near-
zero strength can survive the stresses of mill
ing and handling. Although it was not done in 
this example, minimum bounds on strength of 
materials could be independently estimated 
and a corresponding lower limit on resistance 
could result. The left tail of the resistance func
tion would then be truncated and its area 
reallocated to the remainer of the function. On 
the other hand, upper extremes of load are 
often identified as "disaster" levels beyond the 
practical interest of the engineering design; 
upper limits can be set on the load distribution 
and it too can be truncated. (The influence of 
load truncation on results will be discussed 
later.) 

Figure 8.–The random variable 1/I' is a resis
tance variable. The distribution is defined 
by the reciprocals of I' values shown in 
figure 6. The I' data were fitted by the 
lognormal distribution and consequently 
1/I' is fitted equally well by the lognormal 
distribution. (M 145 657) 
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In summary, actual test data on fun
damental strength properties were used in this 
example, and the correlations between E and 
B and between E and T were calculated from 
these data. The generation of E, B pairs 
assumes a distribution of residuals about the 
regression line (figs. 2 and 4). This residual 
distribution was assumed to be normal and its 
variance proportional to E. It is also necessary 
to estimate the unknown correlation between 
E, B residuals and E, T residuals. The initial ex
ample calculation assumes it to be zero, but 
the influences of higher levels are examined in 
later results. 

When all of the detailed input information 
is assembled for the example and processed 
into the load and resistance distributions (figs. 
7 and 8). application of the integral formula (7) 
yields a probability of failure for these dis
tributions of 0.565 x 10-5. This figure is based 
on the structure in figure 1 and was calculated 
with all of the input conditions that have been 
imposed. If this structural situation were to be 
taken as a standard, then the probability of 
failure equal to 0.565 x 10-5 could be assigned 
the role of a base value-anexpression of 
belief that the structure will fail in service under 
the variable loading imposed. The magnitude 
of this probability is difficult to Interpret in any 
exact sense without a background of ex
perience with other similar numbers. This dif
ficulty is further compounded by the limited 
data base and related uncertainties such as 
the accuracy of the strength model. However, 
we believe that the errors in the system are 
stable or have the same bias in one application 
as in another. Thus, comparison among cases 
can have meaning in spite of the limited value 
of individual answers. 

APPLICATION OF 
DIFFERENTIAL- RELIABILITY 

TO ANALYSIS OF THE 
COMBINED LOAD MEMBER 

The reliability methodology developed 
above was extended through the differential 
reliability concept to examine the influence of 
(a) lumber property variability, (b) the con
comitance of B and T, (c) the probability of ex
ceeding design load, and (d) the effect of load 
truncation. Increased insight into all of these 

concerns helps to focus the research on 
planned reliability design of trusses. For exam
ple, demonstrable effects of lumber properties 
reinforce and guide the search for lumber 
property data being shared by the U.S. Forest 
Products Laboratory (FPL). University of 
Wisconsin, University of Illinois. and 
Washington State University as part of their 
joint Truss Lumber Program.* (Specifically, 
concomitance between B and T is being in
vestigated thoroughly for the first time by FPL 
and Washington State researchers.) Because 
many light frame structures need not be 
designed to the "disaster" level, efficiency may 
be enhanced by considering load truncation 
and the probability of exceeding design loads. 

Variability of E 
The structure shown in figure 1 was 

analyzed differentially with lumber represen
ting two different distributions in initial E input. 
Both E distributions were lognormal with a 
mean of 2.0 x 106 lb/in.2. The coefficient of 
variation was 0.21 in the first case and 0.1 in 
the second. These differences in cvE bear 
some relationship with reality because they are 
probably the differences that would be observ
ed between visually graded and machine 
stress rated lumber. Table 1 gives resulting 
probabilities of failure as a function of variabili
ty in E. 

The probabilities of failure increase in go
ing from the cvE of 0.1 to 0.21. This result is 
expected because strength values B and T are 
positively correlated to E; hence, larger varia
tion in E implies a larger variation in B and T, 
and the result is a more variable resistance 
function. 

Probability of the Load Exceeding
the Design Load 

Three different levels of probability of ex
ceeding design load were used. The load 
curve was located so that the area under the 
load curve to the right of 1 on the horizontal 
axis was 0.001, 0.01, and 0.1. These areas 
represent probabilities designated as Ps in 
table 1 and represent different horizontal scale 

*As 	this paper goes to press, the following reference has 
become available: William L. Galligan and Edwin 
Kallio. 1977. Example of Integrated Research: 
Influence of Lumber Properties on Truss Perform
ance. Forest Prod. J., 27 (11), 12-15. 
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Table1.–Failure probabilities multiplied by 105 for a single 
beam under combined stress 1/ 

Failure probabilities x 105 

Ps 
Residual r2 Coefficient of variation 

in E 
0.1 0.21 

0.001 0.0 0.196 0.565 
.5 .945 2.08 

1.0 1.64 3.36 

7.46 
19.7 

1.0 16.3 28.2 

1 .0 87.9 147 
.5 180 267 

1.0 233 333 

1 / The load function is taken as lognormal with cv = 0.3. 
Ps is the probablility that the load will exceed design 
load. The resistance function is lognormal and has 
been derived from formula (3) by simulation. 

locations of the load distribution with respect 
to the design load. 

As Ps increases in table 1, so do the 
failure probabilities. This follows logically 
because Ps is the area under the load function 
to the right of design load. Increased chances 
of high loads should increase the structural pt . 

Concomitance of B and T 
The concomitance, or cofunctioning of B 

and T, in the simple beam is not well un
derstood, nor is the correlation between the 
two strength properties for the same piece. 
Previous research at Purdue University on 
combined bending and tension stress 
demonstrated the difficulty of an empirical ap
proach to property interaction (6,7). Con
comitance, therefore, becomes a subject of 
study within the research program. The 
procedure, then, is to choose a level of cor
relation between residuals in the E, B and E, T 
relationships and to use this correlation in a 
random process to make the final selection of 
T for the given E. The influence of several 
chosen levels of correlation between residuals 
upon the probability of failure helps determine 
the Importance of further study on con
comitance. 

For each value of Ps in tabla 1, the cor
relation between the B regression residual and 
the T regression residual values was set at 

three levels as designated by the square of the 
correlation coefficient. This represented three 
different levels of B, T correlation-theex
treme correlations of 0 and 1, and one in
termediate value, r2 = 0.5. 

Table 1 illustrates that the probability of 
failure increases with increasing residual cor
relation in the B and T regression residuals. 
When r2 = 1, the resistance distribution has. 
higher variation and thus higher values of pf 
result. This increase of probability of failure 
may not seem immediately convincing; note, 
however, that the drawing of a piece with an 
extreme B value when r2 = 1 will cause the 
companion T value to be an extreme also. This 
situation leads to extension of the resistance 
distribution In both the high and low directions. 
On the other hand, when r2 = 0 and an ex
tremely good or poor value of B is drawn, it is 
most unlikely that a corresponding low or high 
value of T will be drawn. This in turn results in 
smaller variation in the resistance function. 

The magnitude of the concomitance 
effect is shown in table 1 to be a function of the 
coefficient of variation of E and the probability 
of the load exceeding design load, 
represented by Ps . The concomitance, 
therefore, is a concern in research on both 
design and materials. The sections that follow 
include illustrations of some potential im
plications of this effect. 

Design Reflections from the Differential 
Reliability Analyses 

From the preceding analysis a logical 
focus from an engineering standpoint is the 
effect of CvE. As an example of the differential 
approach, consider the first row of table 1 
where Ps = 0.001, the load function is not trun
cated, and r2 = 0.0. The probability of failure 
when cvE is equal to 0.21 is 2.88 times greater 
than when CvE equals 0.1. This number, 2.88, 
may be termed the probability ratio. if cvE = 
0.21 is taken as a standard, then pf = 0.565 x 
10-5 is a benchmark probability. The cvE of 0.1 
can then be thought of as representing a new 
structural system. The immediate question is, 
how much higher could the design loads P and 
Q in figure 1 be for the cvE = 0.1 case and 
have equal pf as the standard benchmark 
situation? Under the assumptions of lognormal 
load and resistance of table 1, it can be shown 
that P and Q could be increased as much as 
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Table 2.–The increase in load carrying capability with equal 
reliability.1/ 

Ps Residual r 2 increase in load capability 

0.001 0.0 1.0835 
.5 1.0722 

1.0 1.0689 

.01 .0 1.0771 
.5 1.0626 

1.0 1.0597 

.1 .0 1.0567 
.5 1.0494 

1.0 1.0472 

1/ The model structure was built with lumber with a cvE 
of 0.1 versus lumber with a cvE of 0.21. This is an 
alternative analysis of the data presented in table 1. 

8.35 percent (table 2). Stated differently, for 
the case of cvE = 0.1 the allowable design 
stresses for the lumber could be increased 
8.35 percent with the same safety as the 
benchmark. It should be remembered that 
these conclusions result from a pilot trial of an 
entire system constructed from limited input 
information. Further consideration and study 
would be required to reach conclusions 
suitable for design purposes. 

A similar analysis can be performed for 
the case of the truncated load distribution 
where loads of "disaster" level are not of in
terest (table 3). The probability ratio, based on 
the first row of table 3, is 3.24. This number 
should not be directly compared to the former 
ratio of 2.88 because, in addition to the focus 
variable, the load model has been changed. 
However, by repeated numerical integration of 
the probability equation and by graphing the 
results, it was found that P and Q could be in
creased 8.50 percent when cvE = 0.1. 
Although the probability ratio differs between 
the cases depending on whether or not the 
load distribution is truncated, the engineering 
result is very much the same. 

An analysis of increase in load carrying 
capacity for equal reliability was not carried 
out for the remaining truncated load cases 
represented by table 3. Nevertheless, results 
of tables 2 and 3 illustrate the importance of 
probabilistic load data. 

Considering table 2 f rom a design 
perspective, an increase in load carrying 
capacity of less than 10 percent may not be im-

Table3. – 	Failure probabilities multiplied by 105 for a single 
beam under combined stress. 1/ 

Failure probabilities x 10 
5 

P s 
2 / 

Residual r 2 Coefficient of variation 
in E 

0.1 0.21 

0.001 0.0 0.159 0.515 
.5 .891 2.02 

1.0 1.59 3.29 

.01 .0 2.21 6.00 
.5 9.26 18.0 

1.0 14.7 26.3 

.1 .0 36.7 84.1 
.5 116 194 

1.0 165 257 

1/ The input conditions are identical lo those of table 
1 except the load distribution has been truncated 
at 1.5 times design load. 

2/ After truncation of the load these numbers are slightly 
less but not enough to affect the results. 

pressive in view of other design uncertainties. 
It should be noted, however, that small in
creases in load carrying assignment (allowable 
properties) can have a marked effect if such 
changes result in qualification of otherwise in
eligible lumber species/grade combinations 
for a crucial use such as the common 28-foot 
house truss. It is also important to 
reemphasize that this study employed a 
simplified structural model: an analysis for a 
truss may produce different results. 

Many other design analyses of this type 
can be made. incorporating a variety of com
parisons: decisions then become possible 
based on the quantified estimates of a 
probabilistic approach to engineering. 

Applications of Differential Reliability 
to Materials Engineering 

Concerns for proper focus in materials 
research elicited this research into truss 
lumber. The problem is common to all 
materials engineering: The difficulty of predic
ting future design-and-use payoff for research 
investments in material properties. Questions 
often asked regarding materials research in
clude: What is the value of materials quality 
control? Will more accurate assignment of 
properties significantly improve design, es
pecially where other factors are imperfectly 
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known? The reliability research reported 
herein demonstrates the usefulness of 
probabilistic efforts tor materials research. 

This research, while not evaluating an ac
tual truss design, did demonstrate procedures 
for such an evaluation. Three materials-related 
influences on truss performance are of par
ticular Importance: (1) material property varia
tion; (2) differing methods of probabilistic 
property characterization; and (3) the relation 
between the several mechanical properties 
presumed to be interactive in members mak
ing up the wood truss. These three concerns 
will be reflected carefully in the next step-the 
combining of better data and more property, 
distribution insights with actual truss design.

Of major significance to materials research 
is the sensitivity study on concomitant proper
ties previously discussed. The comparisons of 
table 2 assume that the degree of residual cor
relation was equal for both levels of lumber 
cvE. So little is known of this correlation. 
however, that one must consider the possibility 
that grading systems producing different 
levels of cvE also may produce both cvE cor
relation interactions and effects of “grade” 
level. Table 4, based on the data analysis that 
led to table 1, permits some insights into these 
possibilities. 

in table 4 the Interaction between grading 
systems and concomitance, as represented by 
residual correlation, Is Illustrated by diagonal 
arrows at r2 levels of 0.5. The numbers within 
the arrows are the relative change in load 
carrying capacity, where the benchmark is the 
lumber with cvE of 0.21. Combinations of cvE 
and correlation can result in negative or 
positive effects, with a positive difference in 
load-carrying capacity up to approximately 20 
percent. 

Different levels of concomitance within a 
grading system are simulated by the vertical 
arrows in table 4. With r2 = 0.0 as the base, the 
Increased levels of correlation result In reduc
tions in load-carrying capacity for equal 
reliability. 

This analysis with a simple one-member 
structure has suggested that correlation 
between strength properties can be important. 
It also suggests, however, that the effects are 
not so great that in a multiple member system 
such as a truss the effects may not be highly 
significant. Because research to quantify con
comitance within and between different 

grading systems can be difficult. the degree of 
concomitance should be examined in analysis 
of a typical truss. 

Table 4.–The difference in load carrying capability in the model 
structure as a result of concomitance 1/ 

1/ The arrows express a change (increase or decrease) 
in load-carrying capability as a result of differences 
in combinations of r2 and cvE, where r2 is residual 
correlation and cvE is the coefficient of variation 
in E. The basis lor the change is the load-carrying 
capability at cvE of 0.21 lor diagonal comparisons 
and at r2 = 0.0 for vertical comparisons. 
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CONCLUSIONS 


Reliability-based design contrasts strong
ly with the existing deterministic design 
process, which has sharp zones of demarca
tion between tabulated allowable material 
values, tabulated design loads, and the 
analysis of the structure. Reliability analysis, 
on the other hand, can deal simultaneously 
with the variable characteristics of all of these 
three principle phases of the design process. 

Basic notions of structural reliability have 
existed for some time but their application to 
wood structural design problems is relatively 
new. The concept of differential reliability is a 
potentially powerful tool penetrating many 
presently difficult problems that relate to 
calibration between old and new practice. New 
materials and new engineering methods can 
be quantitatively compared with accepted 
materials and methods by comparing the 
predicted failure probabilities of structures. 

The research reported herein 

demonstrates a need to know more about the 
correlation between bending and tensile 
strength. It confirms previous indications that 
decreased variability in materials properties 
could lead to increased reliability or-forequal 
reliability-increased load-carrying capacity. 
In addition, it illustrates the mathematics re
quired to generate and deal with frequency 
distributions of resistance and load. Further
more, differential reliability has been applied 
to a truss design format. 

Reliability studies can serve materials 
research through assessing the sensitivity of 
failure probabilities or probability ratios to 
varying levels of input variables. Reliability 
procedures can identify which variables need 
more study and to what level of precision – 
i.e., the effectiveness of materials research can 
be increased through improved identification 
of research targets and scaling of the depth of 
study. 
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APPENDIX: 

DERIVATION OF PROBABILITY OF FAILURE 


A clearer picture of probability of failure 
can be gained by an assembly process using 
the concept of integral. Figure A-1 shows a 
load distribution while a resistance distribution 
is given below in figure A-2. Note that the 
horizontal axis has been labeled x in both 
cases to clarify the necessity that the load 
variable, s. and the resistance variable, r. must 
be measured in identical units. Both curves 
can actually be plotted on axes of the same 
density–the x axes–but are shown separately 
in figures A-1 and A-2 to permit exposition of 
further details. 

The process of calculating a probability of 
failure can be visualized as a stepwise 
procedure of calculating each infinitesimal in
crement of failure probability, dp1. at each 
value of x and associated infinitesimal element 
dx, and then summing (integrating) to obtain 
the total 

(1a) 

where 
dpf = (the probability of load occurring in 

the interval x, x + dx) times (the 
probability that the resistance is 
less than x). 

The probability of load occurring at the interval 
x, x + dx is the area of the shaded vertical bar 

shown in figure A-1 and is 

(2a) 

The probability that the resistance is less than 
x is the area under the figure A-2 curve to the 
left of x (shown as the shaded portion) and is  

(3a) 

Then 

(4a) 

or, in standard notation 

(5a) 

Summing dp, for each associated x value is a 
second integration process and produces for
mula 8. 
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Figure A.–Load distribution is shown above 
and an associated resistance distribution 
below The product of shaded areas is 
an incremental element of probability 
of failure. The total of such products for 
all possible values of x is the probability 
of failure for the prescribed load and 
resistance distributions. 

(M 145 660) 

16 4.5 - 17 – 2 – 78  
U . S .  G O V E R N M E N T  P R I N T I N G  O F F I C E :  1 9 7 8 – 7 5 0 - 0 2 7 8 5  


