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Abstract

Solutions for the elastic torsion of sandwich
strips having triangular, rectangular, or
trapezoidal cross sections are presented
analytically in terms of suitable design
parameters. Data obtained from resulting
expressions are presented in a series of
design curves for normalized values of
torsional stiffness and maximum facing and
core shear stresses.

The analysis is based on the Saint Venant
theory of torsion. The sandwich facings are
idealized as identical, thin, isotropic mem-
branes, while the core's elastic behavior is
characterized by a single transverse modulus
of rigidity.
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Introduction

Structural ~ sandwich  composites in  aircraft construction are frequently loaded in

torsion. To aid in the design of such flight vehicle components, solutions are
derived and presented herein for the elastic torsion of sandwich strips having
various  cross  sections. Explicit  expressions for the torsional stiffness, maximum

facing shear stress, and maximum core shear stress are developed and presented both
analytically and as a series of design curves for normalized values of these
quantities.

The theory and governing equations used are taken from an earlier work by Cheng,

which expanded on a previous work by the same author. 3 The analysis is based on the
Saint Venant theory of torsion, the details of which are provided by Timoshenko and

Goodier. 4 The facings are assumed to be thin isotropic membranes of equal thickness,
while core stiffnesses are assumed negligible in all directions except that normal
to the sandwich.

Numerical results for trapezoidal sections are shown to converge to results for
rectangular  sections in the proper limit. Furthermore,  certain  results €or rectan—
gular sections are shown to reduce to the predictions of an elementary analysis for
torsion  of  hollow, thin-walled  sections.

lThis report is another in a series issued in cooperation with the Military
Handbook 23 Working Group on Structural Sandwich Composites for Aerospace Vehicles
of the Departments of the Air Force and Navy, and Federal Aviation Administration
under DO F33-615-72-M-5001.

2Cheng, S. Torsion of Sandwich Panels of Trapezoidal, Triangular, and Rectangular
Cross Sections. Forest Products Lab. Rep. 1874. 1960.

gCheng, S.  Torsion of Rectangular Sandwich Plates.  Forest Products Lab. Rep. 1871.
1959.

éTimoshenko, S., and Goodier, J. N. Theory of Elasticity., @ McGraw—Hill, N.Y. 1951.



Notation

X, ¥y Z Cartesian coordinates for core
Xys ¥po 29 Cartesian coordinates for  facings
h Minimum distance  separating facing midplanes
b Plate  width
L Plate length
t Facing thickness
G Facing modulus of rigidity
G, Core modulus of rigidity
B Angle of twist
T Applied  torque
o Angle of slope of facings
T Facing shear  stress
T Core shear stress
G
c
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tGeosatan o
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k 1 Normalized torsional stiffness
kz Normalized maximum facing shear stress
kE Normalized maximum core shear stress
1uj Ku Modified Bessel functions of the first and second kind, respectively,
and of order w
Theoretical Development
1. Assumptions

The primary assumption invoked 1is that of the Saint Venant theory for torsion of
prismatical bodies, which specifies that the distribution of shear stresses is the
same on all sections normal to the axis of twist.



The facings are taken to be identical, thin, uniform membranes of an isotropic
material. The core in-plane stiffnesses parallel to the facings are assumed to be
negligibly small (as is the case with all honeycomb cores). As a consequence, there
remains only one nonvanishing core shear stress which is constant throughout the
thickness of the core.

Shear stress in the facings is forced to vanish at free edges of the sandwich.

2. Governing  Differential  Equations

The differential equations follow for the shear stress components within the core
and the facings during torsion of the sandwich strip. The notation used is for the

most part that used by Cheng,2 and the differential equations are due to his
derivations.

Trapezoidal  sections.——A sandwich  strip with a  symmetrical trapezoidal cross
section is shown in figure 1. In the figure, the xy plane is taken to be the mid-
plane of the core, and the x Y1 plane is the plane of the top (or bottom, if desired)

facing. The z and z, axes are chosen as normal to core midplane and facing,
respectively, and o denotes  the angular orientation of the facing relative to that
of the «core midplane.  Using this notation,

z = %+ ytana (1)

where h is the minimum distance separating the two facing middle surfaces.

If the sandwich length L is sufficiently large, the stresses and strains  during
torsion can be assumed not to vary along the longitudinal axis of twist, according
to Saint Venant. Utilizing this  assumption, Cheng2 has derived the governing
differential ~ equation for the facing shear stress ‘TF - (subsequently denoted as T)

11

for torsion about the x axis. For thin facings, this equation becomes

2]
R 2
where &represents the core modulus of rigidity in the xz plane, t the facing

thickness, and & the total plate angle of twist. Also,

G
c

e s e (3)
tGeosdtan o

where G is the facing modulus of rigidity.



Cheng also found the nonvanishing core shear stress Ty, (subsequently  denoted as

Tc:l to be given by

iy tecosaldT
- t(l + s )dy @)

The problem of completely determining the  stress state in the facings and core
reduces to that of finding the solution of equation (2), subject to the condition
that T must vanish at the free edges y = 0 and y = b (b being the sandwich width),
and ‘then applying equation (4).

Rectangular  sections.——A sandwich strip with a rectangular cross section is
shown in figure 2. The governing differential equation for the facing shear stress
T is obtained by forcing a to vanish in equation (2), yielding

ar 2. "G o 5)
sz th + t) L
where
Zhi
2
v = ._...._..‘1_2 (6)
tG(h + t)

The core shear stress T, can be similarly obtained from equation (4) as

5 @ tghh+ t) dr 7

c dy

The complete stress state in the core and facings 1is obtained by solving
equation (5) subject to the conditions T=0a y =0 and y = b, and by utilizing
equation (7).

Triangular _ sections.——A sandwich strip with a triangular cross section is
shown in figure 3. The governing differential equation for the facing shear
stress T is obtained by forcing h to wvanish in equation (2), yielding

2 =26
dTt , dr c 0
Y + i BT = ek 4 ®)
dy
where
GC
B = tGaino ©)
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and similarly, from equation (4), the core shear stress T, becomes

2
_ tecos o jdT
- t(1 * Eysin{:)dy (10)
As with the trapezoidal and rectangular sections, the facing shear stress 1 for
this section must vanish at the edge y = b. However, since the corner y = 0 is not
a free edge, and since the shear stress in the top and bottom facings must be equal
there, T is required only to be bounded in magnitude at y = 0.
3. Analytical Solutions

Expressions follow for the facing shear stress, core shear stress, and torsional
stiffness for torsion of sandwich strips having each of the three sections under
consideration.

Trapezoidal  sections.--The general solution for the facing shear stress T,

satisfying equation (2), is given by Cheng2 as

E_:_L = ZGcasﬂ(z b %)+ ClIﬂ{wE} i1 CEKQQE} (n

where 1, and &l represent modified Bessel functions of the first and second kind,

0

respectively, and of order zero, and C1 and C2 are constants determined by applica—

tion of the stress boundary conditions.

The shear stress tmust vanish at the edges y = 0 and y = b, from which, with the
aid of equation (1) ,
| i h 1
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The core shear stress T can be found by combining equations (4) and (11) and is
of the form s

TC tcogll [ w
a7 = t|1 + =7, Jtanaf 2Geosa + C, 1!;—11 &fEEj -G ¥z KI[EJEE) (13)

The relationship between the

externally applied torque T and the facing shear
stress 1T is documented by Cheng 2 as
b 2 2 b
- t (1l + cos™ 0
T = 4t 6[ Tagy + LT COS W) ﬁ[ tdy (14)
Combining equations (11) and (14) yields, after considerable integration and
simplification,  the  torsional stiffness of the  sandwich. In  particular,
T _ 2tGeosa e.(—z-:j-+ EE)+ el + coszal(%i_l__z_)
B/L tano 3 2w cosa w
it {cl iz + 01, (oVz) - wa (V)
w” tana
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where C1 and C2 are given by equations (12). Equations (15) , (11) , and (13) give

the torsional stiffness, facing shear stress, and

core  shear stress,  respectively,
for torsion of a sandwich

strip having a trapezoidal cross section.
Rectangular _ sections.——The general

satisfying equation (5), is

solution for the facing shear

stress T,
given by Cheng2 as

T
g7z = G(h + t) + B sinhyy + B,coshyy (16)

The constants B1 and B2 are determined by applying the boundary

conditions T = 0
at 'y = 0 and - y = b.  After applying these conditions,

equation (16) becomes



T coshyb
iR G(h + t) %—-E%ﬁb——sinhw - coshyy + l' (17)

Combining equations (7) and (17) yields T, to be of the form

G "J coghyb -
5L G(h + t) TG } =1inkvh pclsh"ry - siuh‘r}rf (18)

The externally applied torque T is related to the facing and core shear stresses
by

b b
T=cet+o) [ way-nf Ty (19)
g i

Combining equations (17), (18), and (19) yields

} 2 _ 2(coshyb - 12]
Zelh. 1) G"[ Ybsinhyh 20

X
6/L
Equations  (20), (17), and (18) give the torsional stiffness, facing shear stress,

and core shear stress, respectively, for torsion of a sandwich strip having a
rectangular Ccross section.

Triangular  sections.——-The general solution for the facing shear stress Ts
satisfying equation (8), can be shown to be

ETT - EGEinﬂ(}T + B) .1 {2.:’_} + A K (2vBy) (21)

The constants A, and 52 are determined as follows: Since T must have some finite

value at the corner y = 0, the -constant A, must vanish,  Applying this and the
condition T= 0 at y = b yields

T [ 1 ( ) u{z'ﬁf"}} 22)
= JGsina {y + = b +
T 1,(2/Bb)

Applying equation (10) yields the core shear stress as

T 2 I.(2vBy)
ﬁf = Zthinu(l + %“%{5) o ‘!E‘_-(h + El-)—-l——-— (23)
i y 1,(2/Bb)



Forcing h to wvanish in equation (14) yields the relationship between the torque
T and the facing shear stress T:

b 2 2. b
T = 4t tana [ tydy + 2Lt cos ) [ L4, 24)
G

cosd

Combining equations (22) and (24) yields, after considerable integration and
simplification,

ulu‘

3 2 2
;ﬁf = 8tGsinatann |o— + %B— b+ 1/B b—xluJEE - %Iztz"ﬁ}
1,(2/Bb) [vVBb
(25)
2
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Equations (25), (22), and (23) give the torsional stiffness and facing and core
shear stresses, respectively, for torsion of a sandwich strip having a triangular
Cross section.

4. Design  Parameters  for  Stiffness
and Maximum Stresses

The quantities of primary interest to design engineers and other technical
personnel are those giving measures of stiffness and maximum stress levels. For the
problem under consideration here, the quantities of interest are the torsional

stiffness 'BTT" and maximum values of the facing shear stress 1, and the core shear
stress T .
c

To provide means of presenting these desired data, definitions follow for suit-
able design parameters. Detailed derivations for the desired quantities are then
presented in terms of these design parameters.

Rectangular  and  trapezoidal  sections.——Introduce the shear parameter V  defined
by

v=-the (26)
26%6
c

Upon making this substitution, it becomes possible to write equation (20), for
rectangular  sections, into the form

2
T _ 2th“be
8L 1 (RECT) @7

1

—8—



where

1

A N T 28
k_f_EECT} . (28)

2/

Since %<< 1 for thin facings, terms involving this quantity are neglected in this

and all  subsequent derivations.

Utilizing  this  definition of V, it becomes possible, after considerable

simplification, to also write equation (15) , for trapezoidal sections, into the
form
2
T 2th"bG
B/L T | (TRAP) @9)
1
where
k{'I'_}RA?}_ = coslt + 2 (H cosdtand + %(%) casﬂtaﬂzu + iﬁi‘(%) coszatanzu
1
b # 2 3 2 3 2
+ J‘W(h) cos otan o + BV cos m:an (.‘n) -?l; + l)Ill[qb}
(30)
2 2
-3 - ancd}) + H’—Inw}] - n[ S ) K, (9)
o2 .
-3y 1] HORE = ROWE =W
in which
2
E+ 2(%)1:“:1 + W(%} caautanzm]ﬂﬂ(da} - [ + W(—) costtan o ] 0(:1:»}
Em
€1y
b 2 2 b b e 2
. [1 + 4V (F) cosdtan ﬂ]IUW] - [1 + E(F)tanu + w[i] cosdtan u.IIﬂ{t;rJ
n I, (WK () = L, (HK, )



and

2
L + 2 2 tan
s =y L2 b
\Tcnsatanza
(32)
vcusutanza
To determine the maximum value of the facing shear stress T in rectangular
sections,  first rewrite equation (17) into the form
cnshL -
T= GEE 1 o Lnh— E - Shehe= f::- + 1 (33)
sinh— v W
N
Differentiating  equation (33) with respect to y/b and setting the result equal to
zero yields the location of the maximum facing shear stress. In particular
:oahl— =
l v 1
tanh=— b = — = tanh—
T sinh— 2/
'l
from which y = b2 is found to maximize t. Substituting this result into  equation
(29) and simplifying yields the maximum facing shear stress Tyax®
& u X (BRCT) 14
HAX 2thb "2 G4

where

k:EREET} 5 kERECT} {1 e } (35)
2V

To determine the maximum facing shear stress in trapezoidal sections, differen—
tiate T as given by equations (11) and (12) and utilize equation (26), yielding

-10-
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1+ E(E)(i]tana 1+ 2(32-){1)ta.nu
h hilb h hilb
LS b 2 st iy 3
Veosdtan d Veosotan o
(36)
- 2(2)eana § b (x
E[h tano vcosa[l + 2(h (h) tanu]
The maximum facing shear stress Tyay 20 then be written in the same form as for
rectangular sections:
. . _T_ (TRAP) 37
MAX Zthb 2 (7
where
2
kETM} = k{m} cosa {1 + E[E)[i) tand + 4V (EJ cos&tanzu
2 1 hilb h
(38)
w) (&) (&) (%)
h 1+2(h)(b tanc h 1+2h i) rand
LTy Zz. | ¥ %oly 2
Veosdtan o Veosatan o
with y/b being the solution of equation (36).
To determine the maximum value of the core shear stress T, in  rectangular
sections, first rewrite equation (18) into the form o
h—— =1
26 cos
Tc - _-_thé tEhH 2"’1?1 .,cahl— *E - sinh-]-‘—% 39)
sinh—— Vv 0l
2/
Differentiating equation (39) with respect to y/b and forcing the result to vanish

yields an equation for y/b having only imaginary roots, implying no absolute maxi-

mum for T. in the range 0 £ y< b. In fact, T, as given by equation (32) is a
smoothly decreasing function of y/b with relative maximum and minimum at y = 0 and
y = b, respectively. Furthermore, these extrema have identical absolute values.
Choosing y = 0, it becomes possible to present the maximum core shear stress in
the form

2G
_ I ¢ , (RECT]
Teyux | 20D vthG ky (40)
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where

KRBT oy (RECD) g L 1)

2/

The maximum core shear stress in trapezoidal sections is determined in the same

manner. From equation (13), the maximum value of T, can be written in the same
orm as for rectangular Ssections:

[26
T ¢ , (TRAP)
T‘:mx = %nb ¥ The 53 (42)

where

h
kng} = k{ij ﬁ(%]cnsutanu <+ ———eee b =
J‘L:usutanza [1 + 2 ("E} (%)tanu]

(43)
h 1+ 2(%)(%)@11& E\/l + 2(h [i)tanﬂ
Ell hJ ‘.Fcasutanzn:t ) nKl b ‘I.Tc::-ac:tan o
The value of y/b to be used in equation (43) is that which satisfies
e | ‘/1 + 2(3) (Feana | 2 ‘[1 + 2(2) (Y cano
o Veosotan o o | vcusutanzt]
‘/1 + 2 _)(z}tm E Jl + z[%)(g) tana
‘I.Tcnsu.tan a o L i vcosatanzu
~ & (44)
1+ 2(—) (1 tand 1+ 2[}1 (1 tand
o]

Veos utanza

Jl + 2(%) (E]tanu
| vcosutanza J
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(RECT)
ky

The coefficients give normalized values of sandwich torsional stiffness

and maximum facing and core shear stresses in terms of a shear parameter V
involving sandwich properties and dimensions.

The coefficients kETRﬂP)
torsional stiffness and maximum facing and core shear stresses in terms of the

shear parameter V, the angle o defining the slope of the facings relative to the
core midplane, and an aspect ratio h/b defining the sandwich thickness to width
characteristics, It is mnoteworthy to observe that these normalized quantities

were defined in exactly the same way as their counterparts for the rectangular

k.'I:RE(:T}
i

give corresponding normalized values of sandwich

section, . As will be seen, this will afford a means of providing direct

comparison between calculations for the two cases,
It is apparent from comparison of the expressions given by equations (28),

(35), and (41) with those of equations (30), (38), and (43) that presentation of
data for trapezoidal sections must of necessity be extremely more complicated than

for rectangular sections. In particular, whereas the kiRECT} are functions of
only the shear parameter V, the kiTRAF) are functions of V, @, and h/b. It is
possible, however, to facilitate ~calculations for trapezoidal sections by con—
densing the expressions for the RETRAP} through the use of a single approximation

and the definition of a new variable R defined by

tand
R (45)

The approximation involves letting coso~+1 (i,e., considering only small values of
a). Actually, this is not very restrictive-—whena = 20° (a highly trapezoidal
section), cosa = 0,94, The motivation for making this reasonable approximation is
{TRAP)
i
functions of only two variables—¥ and R. Making these substitutions within the
expressions for these normalized quantities yields

simply to provide a means of obtaining expressions for the k which are

2

1 oz 4. 2 2 3 23{&(@ )

———k(Tw}~1+2R+§R + 4VR® + 4VR "'EVR%E?!. +1Il{¢:|
1

2 2 iy
(ﬁ'- + 1)11(ur) - j{—lu-&m + %zucw}_-‘ - n[%(% i l)Klfw (46)

2 2 2
- ﬂ(—‘ﬁ— + 1)&1(1&; + 3% () - %{th]}

0
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where

(1 + emzmﬂm (14 R+ wazmﬂ{m
T (DR, @) = LKy (®)

E =
47)
(1 + 2R + WRHI (W) - (1 + VR ()
T @R, - I, (5

n=

and
1
p = —
RVY
v1l + 2R
RV

(48)

b =

Furthermore,

A b
k{TRAP) o, | (THAP) gl N 2&(%] T Elﬂ[l 1+ zn[b!] ) nkﬂ[i 1+ 2R{b]J )

R v R v

where y/b is the solution of

1+ 2R 1) 1+ 2L
1 b 1 ’ [b]
““1[E 3 ]- EII[R— = }: 2R ‘I.T[l + ER{%H (50)

Finally,

b

1+ mi&
RgTRAP"J - kiTEEF}ﬁ R 2 + 1/8 EI}’\% . ( }
v‘d‘[l + za_{%ﬂ

¥
el 1+ 2r(%
LS v

C2))
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where y/b is the solution of

bl i
e % 1+ jR(b) o, %. 1 +U2R(b)
1+ 2R[E 1 + 2R|L 1+ 2r(L
gy <€L; i) PO ERNERES 51 | s
¥ il
el Kuili 1+iR{h)+K2% l+§R[b)

The coefficients kiTmJ have now been presented in terms of two independent

variables——a shear  parameter Vdefined exactly as in the case of the rectangular
section, and a shape parameter R defining the deviation of the trapezoidal section
from a rectangular section. It is obvious that as the parameter R approaches zero
(i.e., o*0) the trapezoidal section converges to a rectangular section.  Accordingly,
taking the limit as R approaches zero of the kiTMP} should yield the: kiRECT}.
Inspection, however, of equations (46) , (49), and (51) reveals the impracticability
of accomplishing this limiting process analytically to reduce these equations to

the forms of equations (28), (35), and (41), respectively. Subsequent numerical

calculations for the ki(TM} did converge to calculations for the Tr:.i{R‘ECT]1 for
decreasing values of R.

Triangular _sections.——Introduce the shear parameter =~ W defined by

LG
s 2bG_ (53)

Upon making this substitution, it becomes possible to write equation (25) into the
form

T  8tb G

6/L T | (TRI) (54)
1

where

1 1 1 + 2Wsinc 2
:f-T-,-R;rﬁ- sinoitana 3 + Wsing - ; ¥2Usina I1 (v o — )
1 IU ‘IWsina

2
- {EH‘sinuJIZ( Wsinl:f.)

(55)
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Proceeding in the same manner as with the rectangular and trapezoidal sections,
the maximum facing shear stress becomes expressible in the form

T (TRI:
T = —— 4 (56)
MAX hthz 2

where

1,:I.E'J‘.‘RI} = R;ITRI} sina E+ Waina - (1 + 2Weina) (57)

2

and y/b is the solution of

gL
(1 + 2Wsina) 11( WS(’;L)= 1|'2[§)w51m I, ( Hafm) (58)

The maximum core shear stress can be written as

2 __Tikgmn
‘MAX &b
where
(yEL)
-
kl[TRI) = k{TRIJsinl:l Yo 1 + 2Wsino 1 Wsino (59)

3 1 = .
Uz(b)wsi"“ Ly \NWsina

and y/b is the solution of

2L
2 w&i,ju = (60)

There being no real solution to equation (60), the core shear stress value sought
is a relative maximum (or minimum, since absolute value is desired) on the

~16-



interval 0 <y <b. It will be pointed out that this same conclusion was reached
numerically  for the trapezoidal section and that, for both the triangular and
trapezoidal section, the maximum core shear stress always occurred at the thick
edge defined by y = b.

The coefficients kiTRIJ
and maximum facing and core shear stresses in terms of a shear parameter W
involving sandwich properties and dimensions, and an angle o defining the
"triangularity” of the section.

give normalized values of sandwich torsional stiffness

5.  Numerical Calculations and Design
Curves

To facilitate utilization of the analytical expressions derived for torsional
stiffness, maximum facing shear stress, and maximum core shear stress, the
thREGT}1 kETR&P}: dnd kETRIJ
design curves. In all cases, these design coefficients are plotted versus the
appropriate shear parameter (V or W) and, if required, presented in families of
curves (in R or a).

normalized  quantities k are presented in a series of

A summary of the manner in which the design parameters are defined for each

section, as well as the pertinent equations for their calculations, is provided
in table 1.
The design coefficients kERECT} » as given by equations (28), (35), and (41),
are presented in figures 4 and 5 versus the shear parameter V. One especially
interesting result arises from equation (34) when the core is rigid, for which
G > and, consequently, v+0. In  particular,

: T
vax ~ Zehb (61)

Equation (61) is in agreement with the well-known results predicted by the elastic
membrane (''soap-film') analogy for torsion of thin-walled sections (Trayer and

March). 3

The data presented in figures 4 and 5, and in all subsequent figures, were
obtained through the use of the U.S. Forest Products Laboratory math and computer
facilities with its IBM 1620 system, and the facilities of the University of
Wisconsin Computing Center with its Univac 1108 system.

Presentation of design data for torsion of trapezoidal and triangular sections
cannot be presented in as concise a form as for rectangular sections. The forms
(TRAF) {TRI)
ki

and k; necessitate presentation of these quantities in families

of the

of curves.

iTrayer, G. W., and March, H. W. The Torsion of Members Having Sections Common in

Aircraft Construction. Nat. Adv. Comm. Aeron. Rep. 334. 1930.
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Figures 6 through 15 present the design coefficients plotted, in families

=208 versus the shear parameter V. Superimposed on appropriate

“hfb?
figures are the plots of figure 4 for thekiﬂEET}’

of curves in R
to illustrate the correct
convergence of the trapezoidal section results.

ETRI} plotted, in families

Figures 16 through 21 present the design coefficients
of curves in o, versus the shear parameter W. Values of all coefficients were
calculated for values of VorW as small as was practicable within the framework

of the computer routines® used to calculate the required modified Bessel functions,

Calculations for the normalized maximum facing and core shear stresses (k2 and
k3, respectively) involved essentially two parts, the first of which involved
obtaining the solution of an appropriate transcendental equation for the location
of the maximum value. The roots to these equations were obtained numerically via
an iterative scheme. It is noteworthy to point out that for both the trapezoidal
and the triangular sections, the maximum core shear stress in all cases occurred as

a relative maximum in the interval 0 < % < 1 at the '"thick" edge defined by y = b.
It is also noteworthy to mention that the location of the maximum facing shear
stress in the trapezoidal section approached the value y = %for small values of o,
in agreement with closed-form results for the rectangular section,

Summary

The theory and solutions of Cheng have been extended to provide design data for
torsion of sandwich strips of triangular, rectangular, and trapezoidal cross
sections.  Detailed derivations for torsional stiffness, maximum facing shear
stress, and maximum core shear stress have been presented. Normalized values of
these quantities have been expressed as design coefficients and set forth in a
series of design curves versus appropriate shear parameters. Data for trapezoidal
and triangular sections have, of necessity, been presented in families of curves in
geometric parameters expressing the variation of these sections from rectangular
sections.

Data obtained for trapezoidal sections have been approximated to facilitate
presentation of results, and the degree of approximation decreases as these sections
become less '"trapezoidal."

Direct comparison of data is shown on the curves for design coefficients of
trapezoidal sections and rectangular sections, with correct convergence obtained
in the proper limits. Values of the design coefficients for cores of infinite
shear rigidity have been obtained expressly for rectangular sections, but could
only be approximated from the design curves for the other two sections because of
mathematical and, hence, computational unmanageability.

All data presented have been obtained from the analytical derivations through
the use of appropriate digital computer systems and, when necessary, with the aid
of specific programing routines to evaluate complicated mathematical functions.

-'—gperry—Rand Corporation. ~ Math-Pack. Univac Large-Scale Systems . Philadelphia, Pa.
1970.
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Table 1.--Definitions of design parameters and summary

of equationsl used in their calculations

Design Sandwich section
parameter
Rectangular Trapezoidal Triangular
3 2th b6 2eh%be Btb G
1 I T T _
B/L 8/T 8/L
[28] [46] [55]
3 Tvax TMax TMax
2 (T/2 thb) ( T/ 2thb) (zfatd 2
[35] [49] [57]
T Ti.': TC
3 CMAX MAX MAX
4 I:Tr'JQGc 2hbythG) [T-.-"I?_GE 2hbythG (rfan?)
[41] [51] [59]

lThe number in brackets below each

applicable equation from the text,

term indicates the



Figure = 1.--Sandwich with  trapezoidal  cross  section.

Figure = 2.--Sandwich with  rectangular  cross  section.

Figure = 3.--Sandwich with  triangular  cross section.
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