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I n t r o d u c t i o n  

Structural sandwich composites in aircraft construction are frequently loaded in 
torsion. To aid in the design of such flight vehicle components, solutions are 
derived and presented herein for the elastic torsion of sandwich strips having
various cross sections. Explicit expressions for the torsional stiffness, maximum 
facing shear stress, and maximum core shear stress are developed and presented both 
analytically and as a series of design curves for normalized values of these 
quantities. 

The theory and governing equations used are taken from an earlier work by Cheng, 
which expanded on a previous work by the same author. 3 The analysis is based on the 
Saint Venant theory of torsion, the details of which are provided by Timoshenko and 
Goodier. 4 The facings are assumed to be thin isotropic membranes of equal thickness, 
while core stiffnesses are assumed negligible in all directions except that normal 
to the sandwich. 

Numerical results for trapezoidal sections 
rectangular sections in the proper limit. 
gular sections are shown to reduce to the 
torsion of hollow, thin-walled sections. 

1 This report is another in a series issued 
Handbook 23 Working Group on Structural 
of the Departments of the Air Force and Navy, 

are shown to converge to results for 
Furthermore, certain results �or rectan-
predictions of an elementary analysis for 

in cooperation with the Military 
Sandwich for VehiclesComposites Aerospace

and Federal Aviation Administration 
under DO F33-615-72-M-5001. 

2 Cheng, S. Torsion of Sandwich Panels of Trapezoidal, Triangular, and Rectangular
Cross Sections. Forest Products Lab. Rep. 1874. 1960. 

3 Cheng, S. Torsion of Rectangular Sandwich Plates. Forest Products Lab. Rep. 1871. 
1959. 

4 Timoshenko, S., and Goodier, J. N. Theory of Elasticity. McGraw-Hill, N.Y. 
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Notation 

Cartesian coordinates for core 

Cartesian coordinates for facings 

Minimum distance separating facing midplanes

Plate width 

Plate length

Facing thickness 

Facing modulus of rigidity

Core modulus of rigidity 

Angle of twist 

Applied torque 

Angle of slope of facings 

Facing shear stress 

Core shear stress 


Normalized torsional stiffness 

Normalized maximum facing shear stress 

Normalized maximum core shear stress 

Modified Bessel functions of the first and second kind, respectively, 

and of order 

Theoretical Development 

1. Assumptions 

The primary assumption invoked is that of the Saint Venant theory for torsion of 
prismatical bodies, which specifies that the distribution of shear stresses is the 
same on all sections normal to the axis of twist. 
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The facings are taken to be identical, thin, uniform membranes of an isotropic 
material. The core in-plane stiffnesses parallel to the facings are assumed to be 
negligibly small (as is the case with all honeycomb cores). As a consequence, there 
remains only one nonvanishing core shear stress which is constant throughout the 
thickness of the core. 

Shear stress in the facings is forced to vanish at free edges of the sandwich. 

2. Governing Differential Equations 

The differential equations follow for the shear stress components within the core 
and the facings during torsion of the sandwich strip. The notation used is for the 

2most part that used by Cheng, and the differential equations are due to his 
derivations. 

Trapezoidal sections.--A sandwich strip with a symmetrical trapezoidal cross 
section is shown in figure 1. In the figure, the xy plane is taken to be the mid-
plane of the core, and the x1y1 plane is the plane of the top (or bottom, if desired) 
facing. The z and z1 axes are chosen as normal to core midplane and facing, 
respectively, and α denotes the angular orientation of the facing relative to that 
of the core midplane. Using this notation, 

(1) 

where h is the minimum distance separating the two facing middle surfaces. 

If the sandwich length L is sufficiently large, the stresses and strains during 
torsion can be assumed not to vary along the longitudinal axis of twist, according 
to Saint Venant. Utilizing this assumption, Cheng2 has derived the governing
differential equation for the facing shear stress (subsequently denoted as 

for torsion about the x axis. For thin facings, this equation becomes 

(2) 

where G C represents the core modulus of rigidity in the xz plane, t the facing 
thickness, and the total plate angle of twist. Also, 

(3) 

where G is the facing modulus of rigidity. 
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Cheng also found the nonvanishing core shear stress (subsequently denoted as 

to be given by 

(4) 

The problem of completely determining the stress state in the facings and core 
reduces to that of finding the solution of equation (2), subject to the condition 
that must vanish at the free edges y = 0 and y = b (b being the sandwich width), 
and then applying equation (4). 

Rectangular sections.--A sandwich strip with a rectangular cross section is 
shown in figure 2. The governing differential equation for the facing shear stress 

is obtained by forcing α to vanish in equátion (2), yielding 

(5) 

where 

(6) 

The core shear stress can be similarly obtained from equation (4) as 

(7) 

The complete stress state in the core and facings is obtained by solving 
equation (5) subject to the conditions = 0 at y = 0 and y = b, and by utilizing 
equation (7). 

Triangular sections.--A sandwich strip with a triangular cross section is 
shown in figure 3. The governing differential equation for the facing shear 
stress is obtained by forcing h to vanish in equation (2), yielding 

(8) 

where 

(9) 
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and similarly, from equation (4), the core shear stress becomes 

(10) 

As with the trapezoidal and rectangular sections, the facing shear stress for 
this section must vanish at the edge y = b. However, since the corner y = 0 is not 
a free edge, and since the shear stress in the top and bottom facings must be equal 
there, is required only to be bounded in magnitude at y = 0. 

3. Analytical Solutions 

Expressions follow for the facing shear stress, core shear stress, and torsional 
stiffness for torsion of sandwich strips having each of the three sections under 
consideration. 

Trapezoidal sections.--The general solution for the facing shear stress 
2satisfying equation (2), is given by Cheng as 

(11) 

where I 0 and K0 represent modified Bessel functions of the first and second kind, 
respectively, and of order zero, and C1 and C2 are constants determined by applica-
tion of the stress boundary conditions. 

The shear stress must vanish at the edges y = 0 and y = b, from which, with the 
aid of equation (1) , 

(12) 
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The core shear stress can be found by combining equations (4) and (11) and is 
of the form 

(13) 

The relationship between the externally applied torque and the facing shear 
2stress is documented by Cheng as 

(14) 

Combining equations (11) and (14) yields, after considerable integration and 
simplification, the torsional stiffness of the sandwich. In particular, 

(15) 

where C 1 and C2 are given by equations (12). Equations (15) , (11) , and (13) give 
the torsional stiffness, facing shear stress, and core shear stress, respectively, 
for torsion of a sandwich strip having a trapezoidal cross section. 

Rectangular sections.--The general solution for the facing shear stress 
2satisfying equation (5), is given by Cheng as 

(16) 

The constants B1 and B2 are determined by applying the boundary conditions = 0 
at y = 0 and y = b. After applying these conditions, equation (16) becomes 
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(17) 

Combining equations (7) and (17) yields to be of the form 

(18) 

The externally applied torque T is related to the facing and core shear stresses 
by 

(19) 

Combining equations (17), (18), and (19) yields 

(20) 

Equations (20), (17), and (18) give the torsional stiffness, facing shear stress, 
and core shear stress, respectively, for torsion of a sandwich strip having a 
rectangular cross section. 

Triangular sections.--The general solution for the facing shear stress 
satisfying equation (8), can be shown to be 

(21) 

The constants A1 and A2 are determined as follows: Since must have some finite 

value at the corner y = 0, the constant A2 must vanish, Applying this and the 
condition = 0 at y = b yields 

(22) 

Applying equation (10) yields the core shear stress as 

(23) 
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Forcing h to vanish in equation (14) yields the relationship between the torque 
T and the facing shear stress 

(24) 

Combining equations (22) and (24) yields, after considerable integration and 
simplification, 

(25) 

Equations (25), (22), and (23) give the torsional stiffness and facing and core 
shear stresses, respectively, for torsion of a sandwich strip having a triangular 
cross section. 

4. 	 Design Parameters for Stiffness 
and Maximum Stresses 

The quantities of primary interest to design engineers and other technical 
personnel are those giving measures of stiffness and maximum stress levels. For the 
problem under consideration here, the quantities 
stiffness and maximum values of the facing 
stress 

To provide means of presenting these desired 
able design parameters. Detailed derivations for 
presented in terms of these design parameters. 

Rectangular and trapezoidal sections.--Introduce 
by 

of interest are the torsional 
shear stress and the core shear 

data, definitions follow for suit-
the desired quantities are then 

the shear parameter V defined 

(26) 

Upon making this substitution, it becomes possible to write equation (20), for 
rectangular sections, into the form 

(27) 
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where 

(28) 

tSince h << 1 for thin facings, terms involving this quantity are neglected in this 
and all subsequent derivations. 

Utilizing this definition of V, it becomes possible, after considerable 
simplification, to also write equation (15) , for trapezoidal sections, into the 
form 

(29) 

where 

(30) 

in which 

(31) 
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and 

(32) 

To determine the maximum value of the facing shear stress in rectangular 
sections, first rewrite equation (17) into the form 

(33) 

Differentiating equation (33) with respect to y/b and setting the result equal to 
zero yields the location of the maximum facing shear stress. In particular 

from which y = b/2 is found to maximize Substituting this result into equation 
(29) and simplifying yields the maximum facing shear stress 

(34) 

where 

(35) 

To determine the maximum facing shear stress in trapezoidal sections, differen-
tiate as given by equations (11) and (12) and utilize equation (26), yielding 

jgodfrey
Typewritten Text
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(36) 


The maximum facing shear stress can then be written in the same form as for 
rectangular sections: 

(37) 

where 

(38) 

with y/b being the solution of equation (36). 

To determine the maximum value of the core shear stress in rectangular 
sections, first rewrite equation (18) into the form 

(39) 

Differentiating equation (39) with respect to y/b and forcing the result to vanish 
yields an equation for having only imaginary roots, implying no absolute maxi-
mum for in the range 0 y b. In fact, as given by equation (32) is a 
smoothly decreasing function of y/b with relative maximum and minimum at y = 0 and 
y = b, respectively. Furthermore, these extrema have identical absolute values. 
Choosing y = 0, it becomes possible to present the maximum core shear stress in 
the form 
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where 

(41) 

The maximum core shear stress in trapezoidal sections is determined in the same 
manner. From equation (13), the maximum value of can be written in the same 
form as for rectangular sections: 

(42) 

where 

(43) 

The value of y/b to be used in equation (43) is that which satisfies 

(44) 
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The coefficients give normalized values of sandwich torsional stiffness 
and maximum facing and core shear stresses in terms of a shear parameter V 
involving sandwich properties and dimensions. 

The coefficients give corresponding normalized values of sandwich 
torsional stiffness and maximum facing and core shear stresses in terms of the 
shear parameter V, the angle defining the slope of the facings relative to the 
core midplane, and an aspect ratio h/b defining the sandwich thickness to width 
characteristics, It is noteworthy to observe that these normalized quantities 
were defined in exactly the same way as their counterparts for the rectangular 
section, As will be seen, this will afford a means of providing direct 
comparison between calculations for the two cases, 

It is apparent from comparison of the expressions given by equations (28),
(35), and (41) with those of equations (30), (38), and (43) that presentation of 
data for trapezoidal sections must of necessity be extremely more complicated than 
for rectangular sections. In particular, whereas the are functions of 
only the shear parameter V, the are functions of V , and h/b. It is 
possible, however, to facilitate calculations for trapezoidal sections by con-
densing the expressions for the through the use of a single approximation 
and the definition of a new variable R defined by 

(45) 

The approximation involves letting (i,e., considering only small values of 
a). Actually, this is not very restrictive--when α = 20° (a highly trapezoidal

The motivation for making this reasonable approximation is 
simply to provide a means of obtaining expressions for the which are 
functions of only two variables--V and R. Making these substitutions within the 
expressions for these normalized quantities yields 

(46) 
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where 

(47) 

and 

(48) 

Furthermore, 

(49) 

where y/b is the solution of 

(50) 

Finally, 

(51) 
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where y/b is the solution of 

(52) 

The coefficients have now been presented in terms of two independent 
variables--a shear parameter defined exactly as in the case of the rectangular
section, and a shape parameter R defining the deviation of the trapezoidal section 
from a rectangular section. It is obvious that as the parameter R approaches zero 
(i.e., the trapezoidal section converges to a rectangular section. Accordingly, 
taking the limit as R approaches zero of the should yield the 
Inspection, however, of equations (46) , (49), and (51) reveals the impracticability
of accomplishing this limiting process analytically to reduce these equations to 
the forms of equations (28), (35), and (41), respectively. Subsequent numerical 
calculations for the did converge to calculations for the for 
decreasing values of R. 

Triangular sections.--Introduce the shear parameter W defined by 

(53) 

Upon making this substitution, it becomes possible to write equation (25) into the 
form 

(54) 

where 

(55) 
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Proceeding in the same manner as with the rectangular and trapezoidal sections, 
the maximum facing shear stress becomes expressible in the form 

(56) 


where 

(57) 

and y/b is the solution of 

(58) 

The maximum core shear stress can be written as 

where 

(59) 

and y/b is the solution of 

(60) 

There being no real solution to equation (60), the core shear stress value sought
is a relative maximum (or minimum, since absolute value is desired) on the 
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interval 0 y b. It will be pointed out that this same conclusion was reached 
numerically for the trapezoidal section and that, for both the triangular and 
trapezoidal section, the maximum core shear stress always occurred at the thick 
edge defined by y = b. 

The coefficients give normalized values of sandwich torsional stiffness 
and maximum facing and core shear stresses in terms of a shear parameter
involving sandwich properties and dimensions, and an angle 2 defining the 
"triangularity" of the section. 

5. 	 Numerical Calculations and Design
Curves 

To facilitate utilization of the analytical expressions derived for torsional 
stiffness, maximum facing shear stress, and maximum core shear stress, the 
normalized quantities are presented in a series of 
design curves. In all cases, these design coefficients are plotted versus the 
appropriate shear parameter (V or W) and, if required, presented in families of 
curves (in R or α). 

A summary of the manner in which the design parameters are defined for each 
section, as well as the pertinent equations for their calculations, is provided
in table 1. 

The design coefficients as given by equations (28), (35), and (41), 
are presented in figures 4 and 5 versus the shear parameter V. One especially
interesting result arises from equation (34) when the core is rigid, for which 
Gc- and, consequently, In particular, 

(61) 

Equation (61) is in agreement with the well-known results predicted by the elastic 
membrane ("soap-film") analogy for torsion of thin-walled sections (Trayer and 
March). 5 

The data presented in figures 4 and 5, and in all subsequent figures, were 
obtained through the use of the U.S. Forest Products Laboratory math and computer
facilities with its IBM 1620 system, and the facilities of the University of 
Wisconsin Computing Center with its Univac 1108 system. 

Presentation of design data for torsion of trapezoidal and triangular sections 
cannot be presented in as concise a form as for rectangular sections. The forms 

necessitate presentation of these quantities in families 
of curves. 

5Trayer, G. W., and March, H. W. The Torsion of Members Having Sections Common in 
Aircraft Construction. Nat. Adv. Comm. Aeron. Rep. 334. 1930. 
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Figures 6 through 15 present the design coefficients plotted, in families 
of curves in R = versus the shear parameter V. Superimposed on appropriate 
figures are the plots of figure 4 for the to illustrate the correct 
convergence of the trapezoidal section results. 

Figures 16 through 21 present the design coefficients plotted, in families 
of curves in versus the shear parameter W. Values of all coefficients were 
calculated for values of V or W as small as was practicable within the framework 
of the computer routines 6 used to calculate the required modified Bessel functions, 

Calculations for the normalized maximum facing and core shear stresses (k2 and 
k3, respectively) involved essentially two parts, the first of which involved 
obtaining the solution of an appropriate transcendental equation for the location 
of the maximum value. The roots to these equations were obtained numerically via 
an iterative scheme. It is noteworthy to point out that for both the trapezoidal
and the triangular sections, the maximum core shear stress in all cases occurred as 
a relative maximum in the interval 0 b 1 at the "thick" edge defined by y = 
It is also noteworthy to mention that the location of the maximum facing shear 
stress in the trapezoidal section approached the value y = for small values of b 

2 
in agreement with closed-form results for the rectangular section, 

Summary 

The theory and solutions of Cheng have been extended to provide design data for 
torsion of sandwich strips of triangular, rectangular, and trapezoidal cross 
sections. Detailed derivations for torsional stiffness, maximum facing shear 
stress, and maximum core shear stress have been presented. Normalized values of 
these quantities have been expressed as design coefficients and set forth in a 
series of design curves versus appropriate shear parameters. Data for trapezoidal
and triangular sections have, of necessity, been presented in families of curves in 
geometric parameters expressing the variation of these sections from rectangular
sections. 

Data obtained for trapezoidal sections have been approximated to facilitate 
presentation of results, and the degree of approximation decreases as these sections 
become less "trapezoidal." 

Direct comparison of data is shown on the curves for design coefficients of 
trapezoidal sections and rectangular sections, with correct convergence obtained 
in the proper limits. Values of the design coefficients for cores of infinite 
shear rigidity have been obtained expressly for rectangular sections, but could 
only be approximated from the design curves for the other two sections because of 
mathematical and, hence, computational unmanageability. 

All data presented have been obtained from the analytical derivations through
the use of appropriate digital computer systems and, when necessary, with the aid 
of specific programing routines to evaluate complicated mathematical functions. 

6 Corporation. Math-Pack. Univac Large-Scale Systems . Philadelphia, Pa. 
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- -Table  1 .  Defini t ions  of des ign  parameters  and summary 

of equa t ions1 used i n  t h e i r  c a l c u l a t i o n s  



Figure 1.--Sandwich with trapezoidal cross section. 

Figure 2.--Sandwich with rectangular cross section. 

Figure 3.--Sandwich with triangular cross section. 


M 140 393 




Figure 4.--Design coefficients for rectangular sections. M 140 392 



Figure 5.--Design coefficients for rectangular sections--stiff cores, 

M 140 405 



Figure 6.--Normalized torsional stiffness for trapezoidal sections. 
R = 0.10, 0.15, 0.20, 0.25, 0.50. M 140 395 



Figure 7.--Normalized torsional stiffness for trapezoidal sections. 
R = 0.03, 0.04, 0.05. M 140 403 



Figure 8.--Normalized torsional stiffness for trapezoidal sections. 
R = 10, 20, M 140 399 



Figure 9.--Normalized maximum facing shear stress for trapezoidal sections, 
R = 0.10, 0.15, 0.20, 0.25, 0.50. M 140 402 



Figure 10.--Normalized maximum facing shear stress for trapezoidal sections. 
R = 0.03, 0.04, 0.05. M 140 409 



Figure 11.--Normalized maximum facing shear stress for trapezoidal sections. 
R = 10, 20, 40. M 140 408 



Figure 12.--Normalized maximum core shear stress for trapezoidal sections. 
R = 0.10, 0.15, 0.20, 0.25, 0.50. M 140 406 



Figure 13.--Normalized maximum core shear stress for trapezoidal sections. 
R = 0.03, 0.04, 0.05. M 140 404 



Figure 14.--Normalized maximum core shear stress for trapezoidal sections. 
R = 4, 6, 8. M 140 397 



Figure 15.--Normalized maximum core shear stress for trapezoidal sections. 
R = 10, 20, 30. M 140 398 



Figure 16.--Normalized torsional stiffness for triangular sections. 
a = 1°, 2°, 3°, 4°, 5°. M 140 407 



Figure 17.--Normalized torsional stiffness for triangular sections. 
= 5°, 10°, 15°, 20°. M 140 401 



Figure 18.--Normalized maximum facing shear stress for triangular 
sections. = 1°, 2°, 3°, 4°, 5°. M 140 410 



Figure 19.--Normalized maximum facing shear stress for triangular 
sections. R = 5°, 10°, 15°, 20°. M 140 394 



Figure 20.--Normalized maximum core shear stress for triangular sections. 
= 1°, 2°, 3°, 4°, 5°. M 140 400 



Figure 21.--Normalized maximum core shear stress for triangular sections. 
R = 5°, 10°, 15°, 20°. M 140 396 




